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Abstract

This paper deals with a design of adaptive fuzzy controller used in real time for the control of
dynamic systems modifying the scaling factors as the adaptation mechanism. The on line
adaptation mechanism modifies the scaling factors for the error and change-of-error of the
fuzzy controller on the basis of any detected changes. The adaptive controller proposed uses a
measure of controller performance as the squared error over the fixed number of sampling
times. The efficiency and the potentiality of the theoretical procedure are shown through
numerical simulation. The control algorithm is implemented in a computer and the
performance of adaptive fuzzy control is evaluated under a set of experimental tests made to
the active control of vibrations of a mechanical system of 1 degree of freedom actuated by
magnetic bearings.
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1. INTRODUCTION

In recent years, there has been growing interest in using fuzzy logic for control systems
(Ribeiro et al., 1999). Fuzzy logic theory have been considered as effective tools to deal with
uncertainties in terms of vagueness, ignorance, and imprecision. This theory is based on a set
of rules which sum up people’s common sense and experience. The idea of the fuzzy logic is
useful for representing linguistic terms numerically and making reliable decisions with
ambiguous and imprecise events or facts.

Fuzzy controllers are most suitable for systems that cannot be precisely described by
mathematical formulations. In this case, a control designer captures operators knowledge and
converts it into a set of fuzzy control rules. The benefit of the simple design procedure of a
fuzzy controller leads to the successful applications of a variety of engineering systems (Lee,
1990).

Most of the real-world systems that require automatic control are nonlinear in nature.
That is, their parameter values alter as the operating point changes, over time, or both. As
conventional control schemes are linear, a controller can only be tuned to give good
performance at a particular operating point or for a limited period of time. The controller
needs to be retuned if the operating point changes, or retuned periodically if the process
changes with time. This necessity to retune has driven the need for adaptive controllers that
can automatically retune themselves to match the current process characteristics.

Basically, there are three types of adaptation mechanisms that can be used to modify the
parameters of the fuzzy controller and consequently its performance: a) the if-then rules; b)



the fuzzy set representing the meaning of linguistic values and c) the scaling factors for each
variable.

The first type (a) also called self-organizing controllers can modify an existing set of
rules or they can start with no rules at all and “learn” their control strategy as they go. Most
reported applications (Shao, 1988) have resorted to heuristic methods for constructing the
self-organizing controllers. One idea is to try to identify which rule is responsible for the
current poor control performance, and then to replace it with a better rule (Driankov et al.,
1996). But it is difficult to develop a control strategy and to calibrate control rules when
complex systems are involved. Automatic rule generation and automatic rule calibration are
required to overcome the first difficult. Learning capability of neural networks and
optimization techniques such as genetic algorithms play the central role (Túpac et al., 1999).

The second type of adaptation mechanism (b) is the tuning mechanism that alters the
shapes of the fuzzy sets defining the meaning of linguistic values. There has been some
argument (Driankov et al., 1996) that changing the fuzzy set definitions should not be used to
tune the controller. The fuzzy set definitions are not arbitrary but are chosen to reflect the
meaning of the linguistic values taken by the variables. Recent works have centered on the
use of mathematical optimization techniques to alter the shapes of the fuzzy sets so that the
output from the fuzzy controller matches a suitable set of reference data as closely as possible
(Homaifar et al., 1995). This procedure is carried out off-line and so tunes the controller
before it is used. No subsequent on-line adaptation is performed, so the controllers are not
strictly adaptive. However, the technique is closely allied to the adaptive methods discussed in
Driankov et al. (1996), and it has been demonstrated that it can be used on-line (Glorennec,
1991). A truly adaptive fuzzy controller that modifies the shapes of the fuzzy sets on-line has
been developed by Bartolini et al. (1982) that applied this adaptive controller to the control of
a simulation of a continuous casting plant.

The third type (c) is the simplest of the adaptation mechanism schemes and it must be
used for the development of fuzzy controllers when the knowledge about the range value of
the input variables is not too simple. In this mechanism, the input or output values are mapped
onto the universe of discourse of the fuzzy set definitions, and the range value of the input
variables is multiplied by a scaling factor. Altering the scaling factor changes the
classification of an input value. This reduces the sensitivity of the controller to the input, and
so reduces the controller gain (Driankov et al., 1996). Yamashita et al. (1988), designed a
fuzzy controller with the error and change-of error of the temperature as the inputs, and the
change in hydrogen gas flow rate to the reactor as the output. They used the following scheme
to automatically increase the controller gain once the operating temperature was reached by
altering the scaling factors for the error and change-of-error. Hayashi, (1991) has derived a set
of equations for calculating the input and output scaling factors for a PI like a fuzzy controller
from the parameters of the first-order model of the process.

This study investigates the use of a adaptation mechanism altering scaling factors to solve
the problem concerning the on-line fuzzy logic control. The proposed mechanism can control
the vibrations in real-time, for achieving a satisfactory response, of a dynamic system
constituted by a vibratory mechanical system of 1 degree of freedom actuated by magnetic
bearings.

This paper is divided as follows. In Section 2 we present some basic notions about fuzzy
logic controllers. In Section 3 the adaptation mechanism is shown. In Section 4 the control
problem is presented. In Section 5 the on-line mechanism is employed to control a vibratory
mechanical system and we also present the results of the numerical simulations and a set of
experimental tests are made to evaluate the proposed controller action under some operating
conditions of the system. The discussion and conclusions are given in Section 6.



2. BASIC CONCEPTS OF FUZZY LOGIC CONTROL

Fuzzy set theory was proposed by Zadeh (1965), and it was employed as an alternative to
traditional modeling and control design in order to provide a suitable representation of
complex systems.

In order to obtain the control design for a nonlinear or complex dynamic system, there are
four basic steps in designing a conventional fuzzy logic controller (FLC) for a physical
system: 1) the definition of input/output fuzzy variables; 2) the decision making of fuzzy
control rules; 3) fuzzy inference logic, and 4) defuzzification and aggregation (see Fig. 1).
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 Figure 1. The Fuzzy Inference System.
The inference operations upon fuzzy if-then rules performed by fuzzy inference systems

are described as follows.

1. The definition of input/output variables. The input/output variables of a fuzzy controller
can be divided into system variables, and linguistic variables. Most fuzzy controllers
employ the error and error rate of system variables as the input and the force, voltage or
another variable of the control law as the output.

2. The fuzzy control rule is important to the successful operation of the fuzzy control system.
The rule base (knowledge base), containing a number of fuzzy if-then rules, is composed
as follows:

Ri: If x1 is Ai1 and x2 is Ai2 . . . and xn is Ain then y is Bi     (1)

Antecedent         Consequent

where x1, x2, ..., xn and y are system variables and Ai1, Ai2, ..., Ain are linguistic values of
the fuzzy variable to express the universe of discourse of the fuzzy sets in the antecedent,
and Bi are linguistic values of the fuzzy variable to express the universe of discourse of the
fuzzy sets in the consequent, and it describes the output of the system within the fuzzy
region specified by the antecedent of the rule.

3. Fuzzy inference logic. The fuzzy inference method based on fuzzy relation composition
law (Zadeh, 1965) is employed in this work. This fuzzy inference logic employs the Max-
Min product composition to operate the fuzzy control rules. The membership values on
the premise part to get weight of each rule. The specific operator is usually Min.

} }



4. Defuzzyfication and aggregation. In order to obtain the correct control input for this
control system, it is necessary to defuzzify the fuzzy sets and aggregate the qualified
consequent parts to produce a crisp output. In this work, the centroid of area was
employed to calculate the final output.

The basic objective, after to construct the controller, is to tune the range of the input
variables for achieving a satisfactory response of a dynamic system using the adaptation
mechanism described in the next section.

3. ALTERING SCALING FACTORS

The following control scheme can be used to automatically increase or decrease the
controller gains once the operating input variables by altering the scaling factors for the error
and change-of-error using a performance measure.

The choice of performance measures depends on the type of response the control system
designer wishes to achieve. Usually the performance measure is the average of the square
error over the previous k sampling times. At sample time, k, a scaling factor modifier, Cek or
CCek, is calculated as a function of the performance measure, ASEk or ASCEk, according to
the set of linguistic fuzzy rules as for example:

If ASEk is VERY LARGE then Cek is VERY LARGE

If ASCEk is SMALL then CCek is VERY SMALL,

for the error and change-of-error, respectively.
The range for the error (GE) and change-of-error (GCE) are then updated via:
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where GE0 and GCE0 are fixed initial range values of the fuzzy controller.
 These rules for Cek and CCek can be implemented in a fuzzy scale system (Fig.2). The

rules have the effect of increasing the fuzzy controller gain by increasing the scaling factors,
as the average squared error decreases as the process is maintained around its set-point.
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Figure 2. The Adaptive Fuzzy Controller Altering Scaling Factors.

To demonstrate the efficiency of this simple adaptation mechanism, the present scheme is
implemented in a computer to control the vibrations, in real-time, of a dynamic system
constituted by a vibratory mechanical system of 1 degree of freedom actuated by magnetic
bearings described in the next section.



4. THE CONTROL PROBLEM

In this section, the characteristics of a simple dynamic system are shown to illustrate the
validity of the adaptation mechanism.

The system is composed of a vibratory mechanical system of 1 degree of freedom, a
fuzzy controller, one sensor of proximity that detects its lateral movements, and it is actuated
by magnetic bearings that produces the control forces. The physical structure of the
mechanical system and all the constituent elements are shown in Fig. 3.

The block diagram of the control system is shown in Fig. 3. The fuzzy controller is
implemented on the personal computer. The output of the sensor (Xs) is read by the A/D
converter and the sampling period is chosen as 5 [ms]. The computed control signal (vc) is
sent to the current driver (I1) via a D/A converter and it feeds the solenoids of the magnetic
bearing that produces the control force (F).
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Figure 3. Experimental Setup for implementing the Control Design.

The objective is to use the actuator, which can provide a force F which will bring the
system to reduce the amplitudes from an arbitrary initial conditions in minimum time.

The system is modeled by the transfer function of second order described as follows:
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where X(s) is the Laplace transformed of the displacement and F(s) is the Laplace
transformed of the forces, wn is the natural frequency, and ξ is the damping.

In Ribeiro et al. (1997) are shown the characteristics of the magnetic bearings utilized in
this work. The equations of the current driver and sensor of proximity, and the parameters of
each component of the physical system were obtained experimentally and are described in
detail in Ribeiro et al. (1999).

Vibratory system:

(a)  Natural Frequency: wn = 77,5 [rad/s]
(b)  Damping: ξ = 7,07E-3
(c)  k = 11377,882 N.m-1

Magnetic Actuator:

(a) Pole area: A = 225 mm2

(b) Number of coils: N = 100 coils
(c) Constant current: i2 = 0,5 Ampère
(d) Nominal gap: s = 1,5 mm

The sensor of proximity and current driver gains are: ksensor = 2,0 [Volts/mm] and
Kdriver = 0.435 [Ampère/Volts], respectively.



5. NUMERICAL AND EXPERIMENTAL EVALUATION OF THE CONTROLLER

The efficiency of the adaptive fuzzy controller was verified through numerical and
experimental simulations to the controlled and not controlled system.

The vibratory system used in the experimental tests is shown in Fig.4.

Figure 4. The Experimental Apparatus of the Vibratory Mechanical System.

The numerical simulations of the system were implemented using the simulation software
Matlab . The Fig. 5 shows the block diagram of the close loop system with the adaptive fuzzy
controller. The two-input, e(t) and ce(t), and single-output vc(t) (MISO) control problem is
considered in Fig.5. The aim is to maintain a single process-state variable e(t) at set-point r(t).
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Figure 5. Close Loop System using the Adaptive Fuzzy Controller.

The performance measure uses the average square error (ASE) and change-of-error
(ASCE) as the performance indices calculated over a fixed observation period k = 20 (Eq. 2),
and the results are the inputs of the fuzzy scale system (ASE and ASCE). These inputs are
constituted by 4 triangular membership functions (ZERO, LOW, MEDIUM and HIGH) for
each one, and the cross-point ratio of all is 0.5.

The universe of discourse of the inputs are: 0 to 1.4 [mm2] for the ASE input and 0 to
6.105 [mm2/s2] for the ASCE input. The universe of discourse of the outputs of the fuzzy scale
system are: 0.1 to 1.5 for both outputs (Cek and Ccek) and it was utilized 8 fuzzy inference
rules described as follows.

The fuzzy scale system changes the scaling factor of the error Cek and the scaling factors
of the change-of-error Ccek depending on the values of the performance indices (ASE and
ASCE).



If ASE is ZERO then Cek is ZERO
If ASE is LOW          then Cek is LOW
If ASE is MEDIUM   then Cek is MEDIUM
If ASE is HIGH then Cek is HIGH
If ASCE is ZERO    then  Ccek is ZERO
If ASCE is LOW        then Ccek is LOW
If ASCE is MEDIUM then  Ccek is MEDIUM
If ASCE is HIGH     then Ccek is HIGH

The fuzzy controller presents two inputs, e(t) and ce(t) and one output vc(t). The inputs
and output are composed by 7 gauss-shaped membership functions (NH, NM, NS, Z, PS, PM
and PH) and the cross-point ratio of all is 0.5. More detail about this parameters see Ribeiro et
al. (1999). The fuzzy rules base is constituted by 27 rules and are described in Table 1.

Table 1. Fuzzy Rules Base used by Fuzzy Controller.

NH NM NS Z PS PM PH

NH NH NH Z

NM NM NM Z

NS NS NS Z PM

Z NH NM NS Z PS PM PH

PS PS Z PS PS

PM Z PM PM

PH Z PH PH

E rror (e)

Change-of -error (Ce)

The not controlled system is shown in Fig. 6 and to evaluate the efficiency of the fuzzy
controller, the plant was simulated numerically and experimentally. The results are shown in
Fig. 6, where solid and dashed curves correspond to the experimentally and numerically
controlled system respectively. The numerical initial conditions to [e, ce] were [0 mm, 5E-2
mm/s] and it was applied a impulsive force, as a perturbation, to excite the experimental
system. The initial ranges utilized to e(t) and ce(t) were [-50 Volts, 50 Volts] and [-100
Volts/s, 100 Volts/s] respectively. The final ranges to these input variables were [-12.5 Volts,
12.5 Volts] and [-25 Volts/s, 25 Volts/s], respectively to both numerical and experimental
results. It is remarkable to note how the controller can reduce the amplitudes from the initial
conditions in minimum time.
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Figure 6. Not controlled System and the Experimentally and Numerically Controlled System.



6. CONCLUSIONS

The adaptive fuzzy controller altering scaling factors as the adaptation mechanism
presented in the paper is suitable for real-time control and posses a quite strong ability to self-
tuning the range of the input variables using the average square error and change-of-error as
the performance indices. All the trial experiments showed that the controller has satisfying
performance of the initial range of the fuzzy input variables. The present control scheme
represents an interesting tool for the development of fuzzy controllers when the knowledge
about the range value of the input variables is not too simple. The fuzzy control proposed in
this paper is certainly the simplest approach to adaptive fuzzy control which has proved itself
through present application study. The on-line fuzzy self-organizing controller and its control
algorithm constitutes the next implementation for this work.
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