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Abstract. The objective of this work is to describe the design and the implementation of an
experiment to study the dynamics, the experimental identification and the active vibration
control of a Flexible Structure Mounted Manipulator System (FSMS). The system consists
of a three degree of freedom cylindrical manipulator system with a flexible link on its tip. A
two-degree of freedom polar rigid manipulator is mounted on the flexible macro
manipulator. The dynamic modeling and experimental modal analysis identification in the
frequency domain are being applied to design active digital control strategies for the
micro-manipulator system to damp the mechanical vibrations of the flexible structure on
the tip of the macro-manipulator system.
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1. INTRODUCTION

Investigations on dynamic modeling and control of flexible structure mounted
manipulator systems (FSMS) have attracted a great deal of interest due to special
applications in the control of large flexible manipulator systems, with large work-space and
simultaneous requirements of great precision at its end-effector positioning [1]. In these
applications the active vibration control of the macro flexible manipulator requires
considerable control energy, and a possible solution involves the concept of a micro rigid
manipulator mounted on the macro-flexible system. This concept is generally referred as a
micro/macro hybrid manipulator system (Nenchev, Yoshida & Uchiyama, 1996).



The FSMS system was assembled at the Mechatronics Laboratory of the University
of Taubaté (UNITAU), and it consists of a micro manipulator system with two polar
rotational joints, mounted on a flexible macro-manipulator system. The flexible structure is
a cantilever beam mounted on the tip of a three degree of freedom cylindrical (r, θ, z), rigid
manipulator system. A schematic view of the system is shown in Figure 1. The flexible
beam has a low stiffness in the horizontal direction, in the same plane of motion of the
polar micro manipulator. In this work we describe the analytical modeling together with
model validation studies carried out through experimental modal testing and parametric
system identification studies in the frequency domain. A nonlinear control law is proposed
and tested to actively damp the mechanical vibrations of the flexible link.
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Figure 1 – Schematic view of the FSMS.

2. DYNAMIC MODELING OF THE FSMS

The analytical model of the system is derived from Hamilton’s extended principle
and the assumed mode method. In this work we have considered only a one-degree of
freedom micro manipulator mounted on the tip of a flexible Euler-Bernouille beam. The
motion of the cylindrical macro-manipulator is used only to position the FSMS on its
workspace, and excite the vibracional degrees of freedom of this system. A generalized
flexible homogeneous transformation and symbolic manipulation are applied to derive the
equations of motion, (Junkins, 1993) and (Soares, Góes & Gadelha,1996). The generalized
coordinates are the angular displacement of the micro manipulator joint, q=qr(t), and the



modal coordinate, qf(t) associated with the elastic displacement of the beam, w(x,t).The
generalized force include the joint torque of the micro manipulator system, u(t).
Considering that the macro-manipulator have assumed a known position in its work space,
the Lagrangian of the FSMS system, is written as, L = Tap + Tf – Vf ,
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and Tap is the kinetic energy of the micro manipulator system, with one degree of freedom,
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Applying the assumed mode method, we write the elastic displacement as,
w(x,t)=ψ(x).qf(t), where the admissible function is given as (Junkins, 1993).
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which upon substitution on equations (1) and (2) above, gives (Lew & Trudnowsky, 1996) :
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The virtual work of non-conservative forces is written as,
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and applying Lagrange’s equations with only one assumed mode, the equations of motion
can be written in a matricial form as below,
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where :
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The off-diagonal terms in the mass matrix, Mfr, represent the inertial coupling
between the micro manipulator motion, qr, and the dynamics of the supporting flexible
structure, qf. The unforced, undamped motion of the flexible structure, is excited by the
dynamics of the micro manipulator system, according to the following equation:
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The coupling force is expressed as the time derivative of the coupling momentum of
the FSMS, ℑ  = rfr qM ! . Zero reaction on the flexible structure can be achieved with a joint
velocity command given by, dφ/dt = Mfr

-1 ℑ  + cte, or a joint acceleration, d2φ/dt2 = - Mfr
-

1.Nfr.qr (Nenchev, 1996).
In the following sections we describe the experimental procedures used to validate

the FSMS dynamics, through non-parametric identification in the frequency domain. The
micro manipulator is driven by a velocity servo loop and both a piezoelectric accelerometer
and a full strain gage bridge are used to estimate the modal coordinate, qf associated with
the elastic deformation of the beam. The identified model is used to design a non-linear
control strategy to actively damp the vibrations induced in the flexible structure.

3. MODEL IDENTIFICATION AND CONTROL OF THE FSMS

The theoretical transfer functions, between the sensors output (potentiometer,
acelerometer and extensometric sensor) and the velocity servocontrol reference signal, are
determined by neglecting the non-linear terms in equation (8). To illustrate this procedure
let us consider the open-loop dynamics of the flexible structure, obtained by eliminating the
joint acceleration from equation (9),
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The output signal is derived from a strain gage bridge signal, which is proportional to
ε(Lf), the strain at the position Lf of the gage. This signal is related to the elastic
displacement of the beam by the following equation,
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Substituting the above equations (11) and (12) in the closed loop servocontrol, we
calculate the following analytical transfer function,
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where the coefficients, a, b, c, are given in terms of system parameters. In a similar manner
we obtain the analytical transfer function between the joint motion, qr, and the servo
reference signal, Va,
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here the system parameters are given as, Kv= Km/Ra, b2 = Mff -bMrf, b1 = Nrf, b0 = Kff, a2 =
MffMrr - MrfMrf, a1 = NrfMrr, a0 = KffMrr, K, Ra is the motor armature resistance, Km is the
open loop gain and η is the motor gear transmission ratio.

The above derived analytical transfer functions are used to determine the FSMS
system structure in the experimental model validation studies as shown in the next section.
The experimental control of the FSMS slew motion and the active vibration control of the
flexible system is achieved with digital control strategies based on vibration dynamic
compensation [1], and null space reaction control (Nenchev, 1996)

A nonlinear control law for the joint motion can be easily derived to actively damp
the vibrations of the flexible structure. The flexible dynamics, given by equation (11)
above, can be written as a standard damped, second order system, if the control torque is
given by:
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leading to the closed-loop equation,
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This equation leads to a standard eigenvalue problem to obtain the eigenvalues and
eigenvector of the closed loop system. Considering that the open-loop system is completely
observable and controllable, the linearizing control law implement a standard pole
placement technique. The control gains are determined by assigning the closed-loop
eigenvalues.

4. SIMULATIONAL RESULTS

In this section, is presented a scheme for the implementation of the proposed control
law, stated in equation 15. The figure 2 shows the simulation scheme, equation (8). The
physical parameter of the micro/macro system are in the table 1 below.



Table 1 . Flexible link parameters

Parameter name value unit

Rigidity EE 7.1x1010 N/m2

Inertia II 2.97e-9 m4

Shape function Fi 3.57 m

Rigid link mass Mr 0.45 Kg

Rigid link length Lr 0.30 m

Flexible link length L 0.81 m

Density per unit length Rho 0.26/0.81 Kg/m

beam tickness eb 5.20 mm

beam width hb 25.4 mm

Substituting the table 1 parameters in equations (8) and (15), we reach at the
equations (17), (18) and (19):
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The next figure, shows the schematic diagram used in for the simulation results.
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Figure 2 – Simulation Scheme

In figures 3 and 4, are shown the simulation result. Figure 3 shows the modal
coordinate signal qf, where the oscillation is dumped because the control law term ff qG ! ,
equation (16).
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Figure 3 – Flexible link tip displacement, qf(t)

Figure 4 shows the angular displacement of the micro manipulator revolute joint
coordinate, qr(t).

r(t)

Time (s)

Figure 4 - qr(t) time variation

5. EXPERIMENTAL RESULTS

Model validation is carried out through experimental modal analysis and the
estimation of the experimental transfer functions from the sensor signals. A piezoelectric
accelerometer conditioned by a charge amplifier and integrating preamplifier is used to
monitor the vibrational displacement of the beam tip. Full strain-gage bridges are also used
to measure the elastic deformation of the flexible structure. Random noise excitation, of the
joint motion, is used to obtain the parametric model identification in the frequency domain.
A computerized data acquisition and control system (DACS) based on a PC microcomputer
with analog and digital interfaces, is used to monitor the sensor signals and control the
system in real-time. A standard DC torque motor is used to actuate the slew motion of the
micro manipulator.

The physical parameters of the FSMS are given by: E = 7.1x1010 N/m, elastic



constant; I=2.97x10-9 3m ; beam area moment of inertia; Mr = 0.45 kg, mass of the rigid
link; Lr =0.30 m, lenght of the rigid link; Lf=0.81 m, length of the flexible link; ρ=0.32
kg/m, linear mass density; eb= 5.20 mm, beam thickness; and hb=25.4 mm is the beam
high.  Figure 5 below shows the experimental FRF between the rigid link motion, measured
with a potentiometer, and the motor input voltage. Also shown in this figure is the
identified FRF based on the model given by equation (14). The system shows a clear mode
resonance at the frequency of 26 Hz.
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Figure 5 - Experimental and identified FRF for the micro manipulator joint angle.

The same mode structure is shown in figure 6, below, which exhibits the
experimental FRF and the corresponding identified model, for the acceleration at the
flexible beam tip and the actuator input.
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Figure 6 - Accelerometer experimental FRF

The strain gage experimental FRF shown in figure 7, has a more distinct mode
structure. Besides the mode resonance at 26 Hz, it also shows a lower mode structure,
around the frequency of 2 Hz. This frequency coincides with the clamped free mode
resonance of the flexible beam. On the other hand, the mode structure described by
equation (13) does not fit very well the high frequency behavior of the FSMS. Nonetheless,
we consider that the proposed theoretical model indeed represents the main dynamic
characteristics of the FSMS system.
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Figure 7 - Experimental and identified FRF for the strain gage sensor.



These model validation studies and identified mode structure were applied to develop
a nonlinear control strategy to actively damp the mechanical vibrations induced on the
flexible structure mounted micro manipulator system. Instead of a computed torque model
which is more appropriate for a current feedback system, we calculate from equation (10),
the joint angle acceleration which results in a damped closed-loop system for the flexible
coordinate, qf. A simple algebra gives the following equivalent velocity control law for the
established velocity servosystem,

dtqMqGMV rfrfffrr ∫ −= + )( !!! (17)

where Mfr
+, is the inverse of the inertia coupling parameter, and  Gf is the control gain

necessary to actively damp the vibrations of the FSMS. This latter gain was determined by
extensive simulation studies of the FSMS closed loop dynamics.
The nonlinear linearizing control law describe by equation (17) was implemented on a PC
based microcomputer with a standard AD/DA interfaces board. The flexible coordinate was
estimated with the strain gage sensor as described by equation (12). The potentiometer
signal was digitally derived to give an estimate of the joint angle velocity. The sensors and
signal conditioning gains were experimentally determined from the fitted frequency
response functions. In figure 8, below, is shown an estimation of the flexible modal
coordinate for the open loop system. An impulsive disturbance was applied to the flexible
structure and the time decay of the oscillations were recorded, giving a damping coefficient
of approximately, ξ=0.007.
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Figure 8 - Disturbance Response of the FSMS without the active control, time 32.29 seg.

In figure 9, is shown the active control of the FSMS, as implemented by the control
law given by equation (17). The closed loop behavior has an equivalent damping
coefficient close to, ξ=0.002.
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Figure 9 - Disturbance Response with the active control, time 32.29 seg.



A residual mode oscillation is observed due to mismatches between the
experimentally estimated parameters and the parameters of the real plant dynamics.

6. CONCLUSIONS

We have presented preliminary results of the implementation of an experimental
micro/macro-manipulator system, consisting of a micro manipulator mounted on a flexible
structure (Flexible Structure Mounted System/FSMS). We discussed a simplified model of
the FSMS together with some simple control strategies for the active damping of the
vibrations of the flexible base system. Symbolic manipulation, with the software
MATHEMATICA, was used to derive the equations of motion for a generic FSMS. The
procedures were validated with a simple case study both with simulation and experimental
results. Several dynamic models for the sensors and actuator transfer functions were
derived and compared with the experimental Frequency Response Functions (FRF),
obtained by non-parametric modal identification. The FRF’s were used to obtain the
structural model of the FSMS. The identification results showed a dominant mode structure
around the frequency of 2.01 Hz. These studies were important to determine the dynamic
coupling between the macro manipulator servo actuation system and the FSMS system. The
nonlinear control law implemented in this work showed to be effective to actively damp the
vibrations of the FSMS. These results were observed both in the simulations and in the real
time digital control.
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