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Abstract. A nonlinear analysis is performed to determine the effects of a nonsmooth function on the behavior of an
aeroelastic system and its relation to the grazing bifurcation and period-doubling responses. This system consists of a
plunging and pitching rigid airfoil supported by linear spring in the plunge degree of freedom and a nonlinear spring
in the pitch degree of freedom. The nonsmooth function is presented by the freeplay nonlinearity in the pitch degree of
freedom of an aeroelatic system. This freeplay nonlinearity is modeled based on a hyperbolic tangent representation.
The aerodynamic loads are modeled based on the unsteady formulation. A linear analysis is performed to determine
the coupled damping and frequencies and the associated linear flutter speed. Then, a nonlinear analysis is performed
to determine the effects of the freeplay size on the behavior of the aeroelastic system. To this end, two different pitch
freeplay gaps are considered. The results show that, for both considered freeplay gaps, there are two different transitions
or sudden jumps are observed when varying the freestream velocity (below linear flutter speed). It is demonstrated that
these sudden transitions are due to the fact of the tangential contact between the trajectory and the freeplay boundaries
(grazing bifurcation). The results also show that near these transitions the pitch motion changes response from periodic
to period-doubling in the first transition and from period-doubling to periodic in the second transition.
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INTRODUCTION

Concentrated nonlinearities, such as the cubic stiffness and the freeplay are commonly found in an aeroelastic system.
The freeplay nonlinearity exists in control surface attachments of different flight vehicles which is due to loosened me-
chanical linkages and manufacturing tolerances. The presence of freeplay nonlinearity in an aeroelastic system may lead
to complex and undesirable responses, such as instabilities, limit cycle oscillations (LCO), chaos and abrupt transitions
due to bifurcation. The presence of these undesirable behaviors oblige researchers to investigate and evaluate freeplay
nonlinearity effects during the vehicle flight. Virgin et al. Virgin et al. (1999), Conner et al. Conner et al. (1996), Trickey
et al. Trickey et al. (2002), and Vasconcellos et al. Vasconcellos et al. (2012) have studied numerically and experimen-
tally the effects of a freeplay nonlinearity in the flap degree of freedom on the behavior of an aeroelastic system. They
showed that different transitions can occur, such as from damped to periodic LCOs to quasi-periodic responses, and then,
to chaotic motions. These transitions were observed at airspeeds lower than the linear flutter speed Conner et al. (1996);
Fung (1993); Abdelkefi et al. (2012a,b).

Grazing bifurcations of limit cycles are one of the most commonly found discontinuity-induced bifurcations (DIBs)
di Bernardo et al. (2006). These types of bifurcations are caused by a limit cycle that becomes tangent to the discontinuity
boundary of the available piecewise-smooth function. These types of bifurcations can occur only to piecewise smooth
systems. Piecewise smooth systems can be found in various systems or impact oscillators, such as shock sensors, gears,
cutting tools, tapping mode atomic force microscopy, and aeroelastic systems with freeplays. Many researchers studied
different elastic structures undergoing impacts Moon and Shaw (1983); Shaw and Holmes (1983); Shaw (1985); Whiston
(1987); Nordmark (1991); Chin et al. (1994). A special phenomenon arises during zero-speed incidence which is refereed
to "grazing impacts", this phenomenon is originally showed by Whiston Whiston (1987). Grazing bifurcations have
been studied by several researchers in elastic structure, such as spring-mass system Shaw and Holmes (1983); Nordmark
(1991); Stensson and Nordmark (1994); Chin et al. (1994); Virgin and Begley (1999); Molenaar et al. (2001); Dankowicz
et al. (2007), cantilever beams Moon and Shaw (1983); Shaw (1985); de Weger et al. (1996); Long et al. (2008); Dick
et al. (2009); Chakraborty and Balachandran (2012).

In their work, they investigated the effects of many parameters and excitations on the grazing bifurcation, such as
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Table 1: Concentrated typical section parameters of the aeroelastic wing
span Wing span (m) 0.5
b Wing semi-chord (m) 0.125
a Position of elastic axis relative to the semi-chord -0.5
ρp Air density (kg/m3) 1.1
mw Mass of the wing (kg) 1.716
mT Mass of wing and supports (kg) 3.53
r2α radius of gyration square (kgm2) 0.684
ωα natural frequency of pitch (rad/s) 80
ωh natural frequency of plunge (rad/s) 30
xα Nondimensional distance between center of gravity and elastic axis 0.6

low-speed impacts Stensson and Nordmark (1994), friction and hard impacts Chin et al. (1994), harmonic and aharmonic
impacts Balachandran (2003), off-resonance excitations Dick et al. (2009). Because the freeplay nonlinearity is a nons-
mooth function that generally exists in aeroelastic system, grazing bifurcation can take place and then a new feature in
aeroelastic systems can happen. In this work, we investigate grazing bifurcations in a two degrees of freedom aeroelastic
system with a freeplay nonlinearity in the pitch degree of freedom. This system consists of a plunging and pitching rigid
airfoil supported by linear spring in the plunge degree of freedom and a nonlinear spring in the pitch degree of freedom.
The governing equations of the considered aeroelastic system are described in Section 2. In Section 3, the nonsmooth
function which is presented by the freeplay nonlinearity is modeled by hyperbolic tangent representation. In Section 4,
the aerodynamic loads are modeled based on the unsteady formulation. Linear and nonlinear analyses are performed in
Section 5. Summary and conclusions are presented in Section 6.

NONLINEAR AEROELASTIC MODEL

The aeroelastic system consists of a two-dimensional airfoil that has two degrees of freedom including pitch and plunge
motions. The plunge and pitch motions are measured at the elastic axis which are denoted by h and α, respectively. The
distance from the elastic axis to mid-chord is represented by ab where a is a constant and b is the semi-chord length of
the entire airfoil section. The mass center of the entire airfoil is located at a distance xαb from the elastic axis. The two
spring forces for plunge and pitch are represented by kh and kα, respectively. The viscous damping forces are described
through the coefficients ch and cα for plunge and pitch, respectively. Finally, U is used to denote the freestream velocity.
Using Lagrange’s equations, the equations of motion governing this system are written as:

Figure 1: Schematic of an aeroelastic system under uniform airflow
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where mT is the mass of the entire system (wing and support), mw is the wing mass alone, Iα is the mass moment of
inertia about the elastic axis. The values of these parameters used in the following analysis are given in Table 1. In
addition, L and M are the aerodynamic lift and moment about the elastic axis. F (α) is a function used to represent the
pitch freeplay nonlinearity in the system.

The function is known by its discontinuous representation to account for the freeplay effect, F (α) is given by:

F (α) =

 α+ δ , if α < −δ ,
0 , if | α |≤ δ ,
α− δ , if α > δ .

(2)
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Figure 2: Pitch angle versus torque described in Eq. (3), ε increasing from 0 to 100

Using this discontinuous function, different methods can be used to solve the governing equations, such as Henon’s
method Henon (1982). These methods require multiple time-integrations and they are time consuming Jones et al. (2007);
Roberts et al. (2002). To solve this issue, Vasconcellos et al. Vasconcellos et al. (2012) used the tangent hyperbolic
representation (continuous function) to model this discontinuous function. They reported that this representation can be
used effectively to model the freeplay nonlinearity. The mathematical formulation for this representation is given by:

F (α) =
1

2
[1− tanh(ε(α+ δ))] (α+ δ) +

1

2
[1 + tanh(ε(α− δ))] (α− δ) (3)

where δ denotes freeplay boundary region, and ε is a variable which affects the smoothness of the function, thereby deter-
mining the accuracy of the approximation. In Eq.(3), as ε value increases, the hyperbolic tangent functions combination
becomes more representative of the real freeplay effect. This feature is shown in Figure 2 as obtained by using Eq. (3) for
δ = 2.12◦, and for various values of ε. Clearly, as ε goes to infinity, the representation for F (α) leads to the real freeplay
discontinuous effect.

1. REPRESENTATION OF AERODYNAMIC LOADS

The aerodynamic loads are modeled using Theodorsen approach Theodorsen (1935), where the unsteady aerodynamic
forces and moments are written respectively as:

L = πρb2
[
ḧ+ Uα̇− baα̈

]
+ 2πρUbQC (4)

and

Mα = πρb2
[
baḧ− Ub

(
1

2
− a

)
α̇− b2

(
1

8
+ a2

)
α̈

]
+ 2πρb2U(a+

1

2
)QC (5)

where U is the freesteram velocity, C is the Theodorsen function, and

Q = Uα+ ḣ+ α̇b

(
1

2
− a

)
(6)

The aerodynamic loads given in Eqs. (4) and (5) depend on Theodorsen function C(k), where k = ωb
U is the reduced

frequency of harmonic oscillations. Considering the unsteady effect in the flow, the aerodynamic loads associated with
Theodorsen function can be manipulated by convolution based on Duhamel formulation in the time domain Edwards
et al. (1979); Bisplinghoff et al. (1996); Abdelkefi et al. (2012b). Using the Sears and Pade approximations, the unsteady
representation of the aerodynamic loads are modeled as follows Abdelkefi et al. (2012b):

L = πρb2
[
ḧ+ Uα̇− baα̈

]
+ 2πρUb(c0 − c1 − c3)Q+ 2πρU3c2c4(c1 + c3)x̄+ 2πρU2b(c1c2 + c3c4) ˙̄x (7)

and

Mα = πρb2
[
baḧ− Ub

(
1

2
− a

)
α̇− b2

(
1

8
+ a2

)
α̈

]
+ 2πρb2U(a+

1

2
)(c0 − c1 − c3)Q

+2πρbU3(a+
1

2
)c2c4(c1 + c3)x̄+ 2πρb2U2(a+

1

2
)(c1c2 + c3c4) ˙̄x

(8)

where c0 = 1, c1 = 0.165, c2 = 0.0455, c3 = 0.335, and c4 = 0.3. These coefficients are present due to the Sears
approximation to the Wagner function. x̄ and ˙̄x are two augmented variables in the state space. They are related to the
system variables by the following second-order differential equation:

¨̄x = −c2c4
U2

b2
x̄− (c2 + c4)

U

b
˙̄x+

U

b
α+ (

1

2
− a)α̇+

ḣ

b
(9)

More details for the derivation of the aerodynamic loads based on the Duhamel formulation can be found in Abdelkefi
et al. Abdelkefi et al. (2012b).
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NONLINEAR ANALYSIS: GRAZING BIFURCATION

To investigate the effects of the freeplay nonlinearity on the behavior of the aeroelastic system, we perform a nonlinear
analysis. To this end, the freeplay nonlinearity which is modeled by Eq. 3 is introduced in the governing equations. Two
different freeplay gap values are considered which are respectively δ = 0.1deg and δ = 0.5deg.

First freeplay gap (δ = 0.1deg)

For the first configuration when δ = 0.1deg, we consider the following initial conditions (h(0) = 0.001m,α(0) =
0.1deg., α′(0) = 0, h′(0) = 0). It is noted that the wing oscillates for a range of freestream velocity below the linear
flutter speed. Consequently, the numerical simulations are carried out for freestream velocities starting from 9.5m/s,
when the wing presents self-sustained motions. Then, the freestream velocity is increased by steps of 0.1m/s after 6
seconds of motion, until reach the speed of 40m/s.
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Figure 3: Variations of (a) RMS pitch amplitude and (b) RMS plunge amplitude when increasing the freestream velocity.

The plotted curves in Figure 3 show the variations of the RMS values of the pitch and plunge motions as a function
of the freestream velocity. It follows from these plots that there are three different regions. The first one is observed
when the freestream velocity is between 9.5m/s and 13.4m/s. In this region, it is noted that increasing the freestream
velocity is accompanied by an increase in the pitch and plunge RMS amplitudes. When U = 13.4m/s, a small-sudden
jump in both motions is obtained with an increase in the RMS values of the pitch and plunge motions. The second region
is observed when the freestream velocity varies from 13.4m/s and 34.4m/s. When the freestream velocity is increased,
the RMS values of both the pitch and plunge motions are increased. When U = 34.4m/s, another sudden which results
in a decrease in the RMS values of the pitch and plunge motions. However, this jump is more significant in the plunge
motion, as shown in Figure 3(b). The third region is obtained when the freestream velocity is increased from 34.4m/s to
40m/s. In this region, the RMS pitch and plunge amplitudes restart increasing when the freestream velocity is increased.
Therefore, two different transitions are obtained when varying the freestream velocity. The first one when U = 13.4m/s
and the second one when U = 34.4m/s. To determine the reasons behind these two transitions, we focus next near these
transitions with performing a time series analyses.

First transition

For the first transition which is observed at U = 13.4m/s, we plot in Figures 4 the time histories of the pitch and
plunge motions for two different freestream velocities which are considered just directly before and after this transition.
Inspecting these plots, we note the appearance of new harmonics in the pitch motion. Furthermore, the amplitudes of both
motions are increased when the freestream velocity is considered after the transition. The appearance of more frequencies
after the transition in the pitch motion is explained in its correspondent power spectrum, as shown in Figure 5(b). Inspect-
ing the power spectra of both the pitch and plunge motions, as presented in Figure 5, we note that when the freestream
velocity is larger than 13.4m/s, there are new frequencies are appeared and some other frequencies are disappeared. At
this speed, there are two dominant frequencies. The second frequency is more important in the pitch motion than in the
plunge motion, as shown in Figures 5(b) and (d), respectively.

The plotted curves in Figure 6 show the phase portraits for different freestream velocities before and after the first
transition. For the plunge motion, it is noted that the system almost behave the same. As predicted, there is a transition
in the pitch degree of freedom from periodic motion to period-doubling motion. The discontinuity in this freeplay case
occurs when the pitch angle is equal to 0.1deg (half-size of the considered freeplay). Inspecting the phase portrait of the
pitch motion which is plotted in Figure 6(b), the period-doubling event happens near the freeplay discontinuity (±0.1deg)
. Consequently, this first transition is associated with a near grazing bifurcation.
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Figure 4: Time series of the pitch and plunge motions (a,c) before the first transition (13.3m/s) and (b,d) after the first transition (13.5m/s).
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Figure 5: Power spectra of the pitch and plunge motions (a,c) before the first transition (13.3m/s) and (b,d) after the first transition (13.5m/s).

Second transition

We investigate the behavior of the aeroelastic system near the second transition or jump. To this end, we perform the
same time series analyses as used to study the first transition. In Figures 7 and 9, the time histories and power spectra of
the pitch and plunge motions are plotted for two different freestream velocities smaller and larger than 34.4m/s. Clearly,
it is noted that the aeroelastic system changes behavior. In fact, the response of the pitch motion is changed from period-
doubling for freestream velocity smaller than 34.4m/s to periodic response for freestream velocity larger than 34.4m/s.
Concerning the plunge motion, the response is periodic for both considered freestream velocity. This is predicted due
to the fact that the freeplay discontinuity is associated to the pitch degree of freedom. The change in the pitch motion
before and after the transition is probably due to grazing bifurcation. To investigate this transition form period-doubling
to periodic responses and its possible relation to grazing bifurcations, we plot in Figure 9 the phase portraits of the pitch
and plunge motions for both considered freestream velocities. It is noted that there is a small loop in Figure 9(b) which
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Figure 6: Phase portrait of the pitch and plunge motions (a,c) before the first transition (13.3m/s) and (b,d) after the first transition (13.5m/s).
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Figure 7: Time histories of the pitch and plunge motions (a,c) before the second transition (34.3m/s) and (b,d) after the second transition (34.5m/s).

is tangent to the freeplay discontinuity boundary and with a zero-pitch speed incidence. This is exactly the definition of a
grazing bifurcation. Consequently, the appearance and disappearance of the period-doubling responses are associated to
the near grazing and grazing bifurcations and which is also associated with two sudden jumps or transitions.

Second freeplay gap (δ = 0.5deg)

In order to confirm the occurrence of grazing bifurcation in aeroelastic systems with freeplay nonlinearity, we consider
a second freeplay gap or discontinuity. The freeplay gap is considered equal to 0.5deg and the rest of the parameters are
considered the same as the first case of freeplay gap. For the second configuration when δ = 0.5deg, we consider the
following initial conditions (h(0) = 0.001m,α(0) = 0.5deg, α′(0) = 0, h′(0) = 0). Same as the first configuration of
freeplay gap, the wing oscillates for a range of freestream velocity below the linear flutter speed. Therefore, the numerical
simulations are carried out for freestream velocities starting from 9.5m/s until reaches a freestream velocity of 40m/s.

Figures 10(a) and (b) show the variations of the RMS values of the pitch and plunge motions when increasing the
freestream velocity. Similar to the first configuration of freeplay gap, three different regions are observed. The first one is
observed when the freestream velocity is between 9.5m/s and 13.4m/swhich is the same region of the first configuration
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Figure 8: Power spectra of the pitch and plunge motions (a,c) before the second transition (34.3m/s) and (b,d) after the second transition (34.5m/s).
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Figure 9: Phase portrait of the pitch and plunge motions (a,c) before the second transition (34.3m/s) and (b,d) after the second transition (34.5m/s).
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Figure 10: Variations of (a) RMS pitch amplitude and (b) RMS plunge amplitude when increasing the freestream velocity.

of freeplay gap. We note that the freeplay size does not change the first transition freestream velocity. The second region
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is observed when the freestream velocity varies from 13.4m/s and 34.3m/s. At U = 34.3m/s, the second transition
takes place with a decrease in the RMS values of the pitch and plunge motions. Compared to the first configuration of
freeplay gap, there is a small decrease in the freestream velocity of the second configuration of freeplay. The third region
is obtained when the freestream velocity is increased from 34.3m/s to 40m/s. The same investigation is performed in
the rest of this section in order to determine if these jumps are associated with a near grazing or grazing bifurcations. To
this end, we focus near these transitions with performing a time series analyses, as discussed in the previous sections.
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Figure 11: Time histories of the pitch and plunge motions (a,c) before the first transition (13.3m/s) and (b,d) after the first transition (13.5m/s).
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Figure 12: Power spectrum of the pitch and plunge motions (a,c) before the first transition (13.3m/s) and (b,d) after the first transition (13.5m/s).

To determine the behavior of the aeroelastic system and the associated jump or transition when U = 13.4m/s, we
plot in Figures 11 and 12 the time histories and power spectra of the pitch and plunge motions for two different freestream
velocities which are considered just directly before and after this transition. It follows from these figures that there is
appearance of new harmonics or period-doubling in the pitch motion when the freestream velocity is larger than 13.4m/s
compared to periodic response when the freestream velocity is smaller than 13.4m/s. On the other hand, the plunge
motion is periodic for both considered speed. To determine the cause of this change in the pitch motion, we plot in
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Figure 13 the phase portraits of both the pitch and plunge motions. It is noted that when the freestream velocity is larger
than 13.4m/s there is a small loop which intersects the freeplay boundary (δ = 0.5deg) and also intersects the zero-pitch
speed. Consequently, a near grazing impacts is occurred in this transition or jump.
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ḣ
(m

/
s)

h(m)

(c)

−1.5 −1 −0.5 0 0.5 1
x 10

−3

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

ḣ
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Figure 13: Phase portrait of the pitch and plunge motions (a,c) before the first transition (13.3m/s) and (b,d) after the first transition (13.5m/s).
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Figure 14: Time histories of the pitch and plunge motions (a,c) before the second transition (34, 2m/s) and (b,d) after the second transition
(34, 4m/s).

In this section, the behavior of the considered aeroelastic system near the second transition is investigated. Same
time series analyses are performed in terms of time histories, power spectra and phase portraits. The plotted curves in
Figures 14 and 16 show the time histories and power spectra of the pitch and plunge motions for two different freestream
velocities smaller and larger than 34.3m/s. Inspecting these figures, we note that the response of the pitch motion is
changed from period-doubling response to periodic response when the freestream velocity is increased near 34.3m/s. As
the other transitions, the plunge response is always periodic for both considered freestream velocity. The cause of this
transition from period-doubling to periodic responses is explained when plotting the phase portrait plots for freestream
velocities are smaller and larger than 34.3m/s, as shown in Figures 16(a)(a) and (b). A small loop is observed tangent to
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Figure 15: Power spectra of the pitch and plunge motions (a,c) before the second transition (34, 2m/s) and (b,d) after the second transition
(34, 4m/s).
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Figure 16: Phase portrait of the pitch and plunge motions (a,c) before the second transition (34, 2m/s) and (b,d) after the second transition
(34, 4m/s).

the freeplay discontinuity boundary with a zero-pitch speed incidence, as shown in Figure 16(a). This phenomenon is due
to the grazing bifurcation.

2. Phase space at second transition speed for different freeplay sizes

Near grazing and grazing phenomena is studied in this section. To this end, we investigate the transient phase portrait
plots of the pitch motion at the second transition speed for both freeplay gaps, as shown in Figures 17(a) and 17(b).
Clearly, we note that the transition or jump happens when the tangential motion between the small loop and the freeplay
discontinuity boundary takes place. This result is true for both freeplay gap cases. It is noted that the tangential motion
and the small loop disappear which make the pitch motion changes from period-doubling response to periodic response.
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Figure 17: Phase portrait at transition speed for pitch motion: (a)freeplay of 0.1 degrees (34.4m/s), (b) freeplay of 0.5 degrees (34.3m/s)

CONCLUDING REMARKS

We investigated the effects of pitch freeplay nonlinearities on the behavior of a two degrees of freedom aeroelastic
system. The freeplay nonlinearity was modeled based on the hyperbolic tangent representation. The unsteady formulation
was used to model the aerodynamic loads. A linear analysis was performed to determine the coupled damping and
frequencies and the associated linear flutter speed. A nonlinear analysis was also performed to investigate the effects of
the freeplay size or gap on the behavior of the aeroelastic system. Two different gaps of pitch freeplay nonlinearity were
considered to determine the effects of the size of the freeplay on the behavior of the aeroelastic and how the appearance
of period-doubling responses are related to the grazing bifurcations. Two different transitions or sudden jumps were
obtained when varying the freestream velocity (below linear flutter speed) for both freeplay nonlinearity gaps. These
sudden transitions were caused by the tangential contact between the trajectory and the freeplay boundaries. These
transitions were accompanied by a change in the response of the pitch motion from periodic to period-doubling in the first
transition and from period-doubling to periodic in the second transition. These period-doubling events close to grazing
impacts and at grazing bifurcation took place because of the presence of the freeplay nonlinearity.
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