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Abstract. Ostheosynthesis plates are used to fix broken bones. The plate angular position, that it is fixed at a long bone 
external surface, can be correlated with forces and moments that are shared with the bone. An analytic model, based in 
mechanics of solids, is presented to estimate the cross section mechanical plate stress distributions. The result shows 
the angular position that minimizes the plate stress distribution.  
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1. I�TRODUCTIO�  
  

Human long bones can fracture in different patterns. Figure 1 shows an example bone fracture classification (AO 
Foundation, 2013). The treatment for these fractures can be carried by different approaches, as: external fixation, 
intramedullary nailing or ostheosynthesis plates (for now one called plate).    

 

 
 

Figure 1. Different types of fracture (AO Fundation, 2013). 
 

 Plates have been used to fix broken bones, after traumatic occurrences.  (Kubiak, 2006) did a review of the history 
of locked plates and did recommendations for the use of those devices and to look toward future trends in the clinical 
application of locked plates. Other authors used artificial femurs to tests various types of plates submitted to different 
types of loads, (Talbot et al., 2008) experimental tested 3rd Generation Composite Femurs in axial, torsional and 
bending loadings for three plates options: a) lateral locking plate;  b)lateral non-locking plate and a medial allograft 
strut; and c) lateral non-locking plate and intramedullary fibula.  The conclusion was that when maximum stiffness is 
required, the lateral non-locking plate and medial strut should be chosen. (Goswami et. al., 2011) did experiments with 
fourth-generation composite femur, with biomechanical evaluation of LCPs with both locking and non-locking screws 
(hybrid plating). They concluded that LCPs, constructs secured with locking screws, provide higher axial and torsional 
rigidity.   
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 Variations of well known procedures were also accessed. (Ahmad et al., 2007) experimental investigate the 
mechanical stability of a locking compression plate (LCP) construct in a simulated diaphyseal fracture of the humerus at 
increasing distances between the plate and bone. It was recommended placing the plate at or less than 2 mm from the 
bone. (Frigg, 2001) has clinical experience with PC-Fix that indicates the advantages of bridging plate ostheosynthesis 
using an internal fixator in comparison to conventional plating procedures.  
 Although many papers have been written, only a few works discuss plate cross section mechanical stress 
distribution, most of them using finite element analysis, as in (Kunasek et al., 2012). In this work an analytic approach 
is used to estimate the angular position influence load distribution between bone and plate. The cross section plate stress 
distribution resulted from this model can be used to aid to establish an optimized angular position to attach plate to long 
bones, like a femur, to minimize the occurrence of plate failures. 

The simplified analytical model is showed, according to some basic hypothesis of the Solid Mechanics (Crandall, 
1978). The femur/plate model, with loads, is illustrated in Figure 2.a (Kenedi, 2012.a). The model considers that plate 
and bone are placed in parallel arrangement, sharing the load. Stress concentrations, contact forces and screw forces, 
responsible to fix the plate on bone, are not taking into account.  

Figure 2 shows a traditional simplification of a human femur loading forces caused by muscles and the joint reaction 
force. Also shows a radiographic image and a schematic drawing of side positioned plate on a femur bone. 

 

 
               (a)    
 

     
              (b)             (c) 

 
Figure 2. (a) Schematic sketch of a femur load. Femoral plating for a simple fracture pattern: (b) radiographic image 

and (c) schematic drawing (Rockwood et al., 2006). 
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2. A�ALYTICAL MODEL 
  

A few hypotheses are used to simplify the model construction, for instance, the external loading is represented by 
four static forces that are concentrated at proximal femur, no bone side ligaments are recognized, the analyzed cross 
section is medial, the plate shares load with bone, the bone and plate cross sections are assumed to be, respectively, 
hollow circular and rectangular, no screw holes are analyzed and loads built-in by screws are not recognized.  Also the 
bone tissue is assumed to be cortical and the plate material stainless steel, both modeled as isotropic (Kenedi, 2012.b). 

A global and a local coordinates are considered, as showed at Figure 3. The local coordinate axis are attached to 
cross section centroid and can rotate, in counterclockwise direction, around the femur (xg positive direction is 0°). Also, 
figure 3 shows the main cross section dimensions, the analyzed points in plate cross section area (from 0 to 8) and both 
coordinate systems.  

 

 
 

Figure 3. Cross section arrangement for plate at θ = 180º.  
 

Where B and H are, respectively, plate width and thickness, D and d are, respectively bone external and internal 
diameters. The external forces are named: Joint Reaction force (P1) at point A, Abductors force (P2) at point B, 
Ilioopsoas force (P3) at point C and Ilio-Tibial Tract force (P4) at point D are schematic shown at Figure 2.  

The forces can be written in a vector form, with bold-faced letters, as at (1.a). The distances, from each force to the 
cross section centroid, can also be written as a vector, at (1.b): 
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The internal forces and moments, at cross section centroid, written in global coordinates are: 
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Where, g subscripts are referenced to global system coordinates. ji, and k are unit vectors. The index i ranges from 1 

to 4. The forces and moments components, written in local coordinates, at cross section centroid are: 
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To get more compact expressions, some dimensionless constants are established: 
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Where b and p subscripts refer, respectively to, bone and plate. Also A is area; E is modulus of elasticity; G is shear 
modulus;

 
J  is polar second moment of area. The distance from bone centroid to cross section centroid s  and from plate 

centroid to cross section centroid t  are shown.   
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The stresses are estimated by the following expressions: 
The plate axial stress p

*z _σ  is, (Crandall, 1978): 
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where p*  is the plate normal force, defined in Table 1 and 

pA  is the plate area, defined at Table 2.  

The plate bending stresses ( )θσ p
Mxz _

 

and ( )θσ p
Myz _

 are, (Crandall, 1978):  
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where ( )θpxM  and ( )θpyM  are plate bending moments, defined at Table 1 and 
p
xI  and  p

yI , are, respectively, the plate 

moments of inertia, defined at Table 2. The maximum plate torsional stress p
Tz _τ is, (Timoshenko,1955):  
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where pT  is plate torsional moment, defined at Table 1. The plate transverse shear stresses ( )θτ p
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 and ( )θτ p

zy
 are, 

(Crandall,1978):  
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where ( )θp
xV  and ( )θp

yV  are plate transversal forces defined at Table 1. ( )yQ p
x

 and ( )xQ p
y

 are plate first moment of area 

and ( )yt x  and ( )xt y  are thicknesses, all defined at Table 2.  

As the maximum plate torsional stress of (8) is very low, it is neglected. The force and moments components and 
geometric variables are shown at Appendix. To add the effects of each load in a medial plate cross section, the von 
Mises criterion ( )θσ eq

 is applied: 
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3. RESULTS 

 
These equations were implemented in MathCad and MATLAB software. The geometric dimensions used are: 

D=35.6 mm, d=22 mm, B=16.5 mm and H=4.8 mm. The materials proprieties are: Ep=190 GPa, Gp=73 GPa , Eb=20 
GPa , Gb=8.1GPa. The distances (in mm) are: d1=(50cosθ + 1.1sinθ + 11.1, -50sinθ + 1.1cosθ , 97.5), d2=(-14.2cosθ – 
2.6sinθ + 11.1, 14.2sinθ – 2.6cosθ , 79.4), d3=(-25.3cosθ – 0.3sinθ + 11.1, 25.3sinθ – 0.3cosθ , 47.6), d4=(18cosθ – 
25.4sinθ + 11.1, -18sinθ – 25.4cosθ , 23.2). The loads (in Newton) are: P1=(-1062, -130, -2800), P2=(430, 0, 1160), 
P3=(0, 0, -1200), P4=(78, 560, 525) (Bergmann, 2001). Expressions from (1) to (10) were used to generate the graphical 
results shown at Figure 4.  Normal Stress, Shear Stress and von Mises Equivalent Stress distribution are shown at plate 
nine points cross section area, shown at Figure 3, as a function of angular position θ.  

 
(a) 

 
(b) 

 
Figure 4. Stress variation with angular position θ :(a)Shear Stress; (b)Normal Stress; (c)von Mises Stress.  

  
Note that the scales of Figures 4.a, 4.b and 4.c are not uniform to emphasize the stress variations in each position. It 

is possible to recognize that when θ is approximately at 80°, points 1, 2 and 8 have maximum Mises stresses and at 
320°, points 4, 5 and 6 have maximum Mises stresses too. Around 200° all nine points have a minimum. 
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Figure 5 shows the cross section stress distribution at four different plate angles. Note that the scales not are 
uniform to emphasize the stress variations in each position. 

                  
  (a)               (b) 

 
   (c)                                         (d) 

 
Figure 5. Stress distribution on the plate cross section for angles: (a) θ = 80º, (b) θ = 180º, (c) θ = 200º, (d) θ = 320º. 

 
Figure 6 shows the influence of plate position in cross section plate stress distribution. All the stress distribution are 

at same scale. 
 

          
                     (a)            (b) 

 
Figure 6: Stress distribution for different plate positions, for (a) θ = 80º, 200º and 320º and for (b) θ = 180º. 

 
 Note that, for the loading adopted in this work (Bergmann, 2001), the better plate angular position is around 200º 

(Figure 6.a), but at 180º is still a good angular position (Figure 6.b).  
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4. CO�CLUSIO� 
 
An analytical model, using the concepts of the Mechanics of Solids, was proposed to help to determine the plate 

optimized position, which have the minimum stress distribution, for a given load condition. It was shown that von 
Mises stress distribution, in plate cross section, have huge variations in function of plate angular position. As a result of 
utilization of this analytic model and input data, it was shown that the best angular position to attach a plate at a human 
femur is around 200°. Also, analyzing von Mises stress distribution, for nine select points, at plate cross section, is clear 
that the 200° ± 20º range presents also a good performance. 
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6. APPE�DIX 
 

Tables 1 and 2 shows forces and moments that acts in plate and geometric variables. 
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Table 1: Forces and moments components that acts in plate.                                    Table 2:  Geometric variables. 
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