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Abstract. This work uses smoothing by cubic spline in order to attenuate noise signal obtained from thermal processes. 
A signal is generated from an inverse numerical model of the transduction equation considering thermal accumulation 
and convective heat transfers. As errors in measurement data and ill-conditioning of inverse problem are inevitable, 
smoothing by cubic spline was implemented as a regularization technique to soften its effects. Numerical tests have 
shown that the method applied was able to mitigate the ill-conditioning of the numerical model and experimental tests 
have also evinced the ability of the technique to attenuate noise in real-signal obtained from two thermocouples. 
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1. INTRODUCTION 

 
The necessity of different areas of natural sciences or engineering to bond mathematical modeling to experimental 

data made research on inverse problems to considerably increase in the past decades (Lu, et al., 2010; Park and Lee, 
1998). Inverse problems appear in several branches of applied sciences such as engineering, medicine, biotechnology, 
geophysics, astrophysics, among others (Cezaro and Leitão, 2010). 

Inverse problems are related to determining causes by observing effects; the opposite is called direct problem. In 
other words, direct problems are intended determine the response of a system, given a known input function, and 
inverse problems consist in determining the input starting from the output function. The inverse problems are known to 
be ill-posed, that is, at least one of the three conditions (existence, uniqueness and stability) of well-posed problem 
defined by Hadamard are not met; therefore, the inverse problems are more difficult to solve than the direct problems 
(Borges and Bazan, 2009; Park and Lee, 1998). 

Inverse problems are intrinsically ill-conditioned, meaning the process will be extremely sensitive to experimental 
and numerical errors, what can seriously jeopardize the obtained results. Due to this instability, the solution of inverse 
problems is not simple; actually, it gets rather complex, creating the necessity of constant studies in such field. Thus, 
inverse problems must be treated in order to minimize the introduction of errors that may corrupt results. 

According to Tikhonov and Arsenin (1977) inverse ill-posed problems can be associated to well-posed ones, so that 
the solution of the original problem would be accomplished through associated problem. This theory was called 
regularization and the best known one was developed by Tikhonov and Arsenin (1977). Since then several 
regularization methods have been created, each one with a proposed algorithm in order to mitigate the problems caused 
by function intrinsic ill-conditioning. 

In Oliveira, et al. (2006) a numerical technique for signal processing was used as a regularization method. The 
technique employed in Oliveira et al. (2006) was the Simplified Method of Least Squares technique or Savitzky-Golay 
Filters (Savitzky and Golay, 1964), a particular kind of low-pass filter, suitable for smoothing noise. The problem 
consisted in reconstructing, in real time, the temperature of the original process from a distorted, delayed and noisy 
signal, measured by an intrusive gauge. The problem formulation took into account thermal accumulation, convection 
and radiation. Numerical and experimental results have shown that the technique proposed in Oliveira et al. (2006) 
allow reconstruction of process temperature under real experimental conditions with relatively high levels of noise. 
However, the probe time constant and the radiation coefficient depend on convection coefficient, previously determined 
by a minimization process, what is not appropriate for real-time processing, since the temperature reconstruction 
process depends on outdated information. 

However, the optimal smoothing depends on the assortment of appropriate algorithm and optimal smoothing 
parameters that will reach the best commitment between noise reduction and signal recovery. Several methods, such as 
moving average filtering, simplified least squares method, splines, Fourier and wavelet transforms have been used in the 
treatment of noise. The main purpose of applying such methods is the improvement of signal-to-noise ratio 
(Jakubowska, 2011). 

Among the several regularization methods, the spline function has wide application in data interpolation, because 
spline function is a curve constructed of polynomial segments which are subject to conditions or continuity of their 
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points. But if data are originated from experiments, smoothing by splines has been more used, especially after the first 
algorithm was provided by Reinsch (1967). 

This work aims to ease noise signal obtained from thermal processes through smoothing by cubic splines. Cubic 
spline smoothing was chosen because it ensures overall data smoothing; this method tends to be more stable and to 
cause less possibility of data variation. A signal is generated from an inverse discrete numerical model of the 
transduction equation considering thermal accumulation and convective heat transfer. Numerical tests show that the 
technique applied was able to mitigate the ill-conditioning of the inverse numerical model, and experimental tests also 
show the capability of the technique to attenuate noise in actual signal obtained from two thermocouples. 

 
2. METHODOLOGY 

 
2.1 Mathematical formulation of the inverse problem  

 
Figure 1 represents graphic scheme of the inverse problem studied in this work. Two thermocouples are inserted into 

a reagent emulsion; first thermocouple provides the actual temperature of the process, procT  and second thermocouple is 

sheathed and provides the temperature of flow (indicated), indT . 
 

time

temperature

reacting emulsion

Tproc

Tind

thermocouples

 
 

Figure 1. Graphic scheme of inverse problem 
 
Temperatures procT  and indT  are differentiated by the distortions caused by the thermal accumulation of the 

sheathing of thermocouple and by the delays due to the physical mechanisms that underlie the modes of heat transfer, 
such as convection and radiation.  

In this work, it was considered thermal accumulation and convective heat transfers to the mathematical formulation 
of the inverse heat transfer problem, so the equation becomes: 

 

  0 indproc
ind TThA

dt
dTMC                                                                                                                                   (1) 

 
where M  (kg) is  sheath  mass and C  (J/kgK) is the specific heat of the thermal accumulation, A  (m2) is the area and 
h  (W/m2K) is the convection coefficient of  heat transfer. Heat transfer by conduction through the cable of the 
thermocouples was disregarded, since the area of the wire is considered minimal. Dividing Eq. (1) by hA , it is 
obtained: 

 

  0 indproc
ind TT

dt
dT

                                                                                                                                             (2) 

 

where 
hA
MC

  is the time constant of the probe, that is, the temperature increase caused by heat accumulation over 

heat transferred by convection.  
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Equation (2) can be discretized in time by delayed finite differences method with indices i  and 1i  indicating that 
the variable refers in times titi   and   titi  11 , and t  step in time. Thus Eq. (2) can be rewritten as: 

 

    0,,1,, 


 iindiprociindiind
i TTTT
t


                                                                                                                      (3) 

 
Thus, the direct and inverse problems are expressed, respectively, Eq. (4) and Eq. (5), calculating the output ( indT ) 

of the known input ( procT ), Eq. (4), and calculating the input ( procT ) of the known output ( indT ), Eq. (5), respectively 
as: 

 
















 1,,,
1

1
iindiprociind T

t
T

t

T 


                                                                                                                             (4) 

 

  iindiindiindireciproc TTT
t

TT ,1,,,, 


 

                                                                                                                    (5) 

 
Due to the intrinsic nature of the ill-conditioning of inverse problems, their solutions may be corrupted by noise in 

input data, what justifies the study of smoothing methods for treating the results. As a matter of notation, the 
temperature obtained from the inverse problem Eq. (5) will be named reconstructed temperature ( recT ), so it will not be 
mistaken as the actual process temperature ( procT ). 

 
2.2 Method of smoothing by cubic spline 

 
The smoothing by cubic spline brings in its formulation the construction of a new function, through spline function 

and regularized points that will be determined in order to minimize the error between the distances of the given points 
and the smoothed ones. The method requires the determination of parameters, which, though flexible, had its 
characteristics investigated in this work, because they control the strength of the smoothing and delay of regularized 
signal over the reconstructed signal. 

The method of smoothing by cubic splines described in this article was based on the works of Reinsch (1967), 
Pollock (1993) and Weinert (2009). The temperature is restored in time it  given by: 

 
iiregirec TT  ,,                                                                                                                                                           (6) 

 
where   is the error between the original points recT  from the inverse problem Eq. (5) and the smoothed ones regT  

obtained after the application of the regularization method. In this case, the reconstitution of regT  will be through the 

construction of a function  tS  that minimizes: 
 

     












 




nt

t

n

i irec

iregirec dttS
T

TT
L

0

2
2

1 ,

,, 1                                                                                                             (7) 

 
where   is the parameter that controls the smoothing degree and n  the total amount of points. The second term of Eq. 
(7) can be rewritten as a sum of the second derivatives of each of the intervals, as: 
 

     







1

0

22 1

0

n

i

t

t

t

t

i

i

n
dttSdttS                                                                                                                                   (8) 

 
Each spline is composed of cubic segment, then the second derivative at any interval is a linear function, with the 

independent term ib2  in it , 12 ib  in 1it  and iii ttH  1 , then Eq. (8) becomes: 
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    






















 

in h

i
i

i
i

t

t
dt

H
tb

H
tbdttS

0

2

1
2 14

0

                                                                                                            (9) 

 
Solving the Eq. (9) there is as follows: 
 

 2
11

2

0

2

1 3
414  
























 iiii

i
h

i
i

i
i bbbbHdt

H
tb

H
tb

i
                                                                                          (10) 

 
It is possible to rewrite the function  tS  and  tS   as to depend on variables ib  and iregT , . Considering the 

coordinates  iregi Tt ,, ,  1,1,  iregi Tt  and the implicit conditions: 
 
  iregii TtS ,                                                                                                                                                                (11) 

 
  1,1   iregii TtS                                                                                                                                                           (12) 

 
  iii btS 2                                                                                                                                                                  (13) 

 
  11 2   iii btS                                                                                                                                                             (14) 

 
Equation (11) and Eq. (12) are respectively, an identity and equality. Equation (12) can be opened as a cubic 

function as follows: 
 

1,,
23

 iregiregiiiiii TTHcHbHa                                                                                                                          (15) 
 
Isolating ic  from Eq. (15), it is obtained: 

 

iiii
i

iregireg
i HbHa

H
TT

c 



 2,1,                                                                                                                               (16) 

 
Equation (13) and Eq. (14) are an identity and equality, respectively. Equation (14) can be opened as the second 

derivative of Eq. (15) as: 
 

iiii bHab 262 1                                                                                                                                                      (17) 
 
Isolating ia from Eq. (17) it is obtained: 
 

i

ii
i H

bba
3
1                                                                                                                                                                 (18) 

 
Substituting Eq. (18) in Eq. (16): 
 

  iii
i

iregireg
i Hbb

H
TT

c 2
3
1

1
,1,




 
                                                                                                                          (19) 

 
Deriving Eq. (15) and isolating ic  gives: 

 

iiiiii ccHbHa   111
2

11 23                                                                                                                                   (20) 
 
Equalizing Eq. (19) and Eq. (20) and rearranging it: 
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     1,,
1

,1,1111
332 


  iregireg
i

iregireg
i

iiiiiii TT
H

TT
H

HbHHbHb                                                         (21) 

 
According to the condition of the natural spline, the first and the last element of vector  b  are zero, that is, 

00  nbb , with 1,,2,1  ni  . Equation (21) can be rewritten as a matrix system: 
 

   
   





  














  












regT

nreg

nreg

reg

reg

F

nn

n

b

n

n

a

nn

nn T
T

T
T

rf
r

rfr
rfr

b
b

b
b
b

pH
Hp

pH
HpH

Hp
















































































































,

1,

2,

1,

11

2

332

221

1

2

3

2

1

12

22

43

332

22

0000
00000

000
000

000
000

000
00
000

                                    (22) 

 
where, 

 
iii ttH  1                                                                                                                                                                (23) 

 
 iii HHp  12                                                                                                                                                       (24) 

 

i
i H

r 3
                                                                                                                                                                       (25) 

 

 ii
ii

i rr
HH

f 









 


1

1

33                                                                                                                                 (26) 

 
Rewriting Eq. (22) in matrix notation: 
 
     regTFba                                                                                                                                                           (27) 
 
This notation can be used in Eq. (10) and substituted in Eq. (7), thus: 
 

          221 1
3
2 baTTTL regrecrec  

                                                                                                            (28) 

 
By isolating  b  the Eq. (27), as: 
 
      regTFab 1

                                                                                                                                                      (29) 
 
Equation (29) there are two unknown variables,  b  and  regT , then one of them should be replaced by another 

known variable for  the system to be solved. Substituting Eq. (29) in Eq. (28), the terms of Eq. (30) now depend on 
regT : 

 

                22121 1
3
2

regregrecrecreg TFaTTTTL 
                                                                                    (30) 

 
To optimize the values of  regT , Eq. (30) is minimized by differentiation with the respective  regT  and result is 

equaled to zero, thus: 
 

              01
3
42 211




regregrecrec TFaTTT                                                                                              (31) 
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Rearranging Eq. (31) and substituting in Eq. (29): 
 

          bFTTT regrecrec  
 1

3
21                                                                                                                     (32) 

 
Multiplying Eq. (32) by  recTF][1  and rearranging it using identity Eq. (27) it is obtained: 
 
    

 

    
 


D
rec

E

TFbFa 
2

                                                                                                                                          (33) 

 
where, 
 

 





3
12 

                                                                                                                                                                 (34) 

 
Rewriting Eq. (33) and isolating the vector  b as: 

 
     DEb 1

                                                                                                                                                              (35) 
 
Once found the vector  b , the smoothing vector  regT  can finally be written: 
 
      FbTT recreg                                                                                                                                                (36) 
 
Data  recT  will be smoothed according to the following steps: 
 

1. Assemble the matrices  a  and  F  of the Eq. (22) with the values described in Eq. (23), Eq. (24), Eq. (25) 
and Eq. (26). 

2. Build the matrices  E  and  D  as Eq. (33). 
3. Determine the vector  b  from the Eq. (35). 
4. Calculate the smoothing vector  regT  with the smoothing modified parameter   chosen previously. 

 
3. RESULTS 

 
The described algorithm was implemented in the software MATLAB®, which has a toolbox for  smoothing by cubic 

spline; however there is not flexibility in all the parameters  this job requires, for this reason a new implementation was 
carried out according to the project needs. 

Numerical tests were performed in order to evaluate and analyze the implemented smoothing method by cubic 
spline and its parameters. It was generated a signal which simulates procT , with  maximum temperature of 373 K and  

minimum of 363 K, according to a square nature wave. indT  is obtained through the direct problem, Eq. (4), which is 
inserted with random noises and recT  is obtained through inverse problem, Eq. (5). To soften recT  which  intrinsic 
nature of ill-conditioning amplified noises during the inverse process, it was applied a smoothing  signal algorithm 
through cubic spline method. 

The input data for the numerical experiment are: 61074  ,M  kg, 21083  ,C  J /kgK, 610143  ,A  m2, 
21055  ,h  W /m2K, resulting in a time constant 03421,  s, 0010,t   s and 0,01noise   K.  

Figure 2 shows the signals of procT , of the direct problem indT  and of inverse recT  and regT  that is the signal of the 

regularized temperature. Thus, it is observed that the smoothing by cubic spline was able to smoothen recT and therefore 
reconstruct procT . 
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Figure 2. Signal of temperature smoothed by cubic spline 
 
In order to get the best performance of the algorithm and thus the minimum error between procT  and regT , some 

parameters must be determined a priori, as   and H3 . Parameter  , Eq. (34), regulates the degree of smoothness that 
goes from linear regression to interpolation and in Eq. (21) it is possible to add weights to the term H3 , and this way 
control the strength of the smoothing; term H3  refers weight one. Table 1 shows variation of parameter   by the 
weight placed along with H3 , with respective errors calculated according to Eq. (37): 

 

 

n

TT
E

n

i

2
ireg,iproc,





 1                                                                                                                                           (37) 

 
Table 1. Average of errors between the procT  and the regT , in accordance with the variation of   and the weight 

 
H  \   0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

H  194.555 39.525 17.66 9.48 8.725 9.895 11.345 13.935 14.775 15.845 
H1  195.435 40.005 17.16 8.73 7.9 10.36 12.67 13.7 14.72 16.785 
H2  97.94 31.995 13.215 6.26 7.415 10.37 11.945 13.685 15.42 15.82 
H3  69.37 25.46 10.14 4.98 7.555 10.28 11.78 12.5 14.505 15.225 
H4  71.615 30.97 11.565 5.125 8.025 9.945 13.09 14.02 15.07 16.96 
H5  78.88 24.505 12.795 5.22 8.105 10.355 12.07 13.66 14.67 16.09 
H6  81.465 28.605 13.27 5.46 7.95 10.96 11.665 13.535 14.86 17.435 
H7  77.32 29.365 12.88 5.46 7.62 10.845 12.16 14.12 15.91 17.57 
H8  85.36 33.62 13.155 5.74 8.43 10.575 12.48 15.405 16.215 16.96 
H9  85.96 33.985 13.785 5.95 7.8 10.595 11.815 14.29 14.905 16.195 
H10  86.07 32.125 14.66 5.98 8.69 10.705 12.135 14.795 13.78 16.12 

 
According to Tab. 1 it may be determine the best weight for H  and the best   as being respectively H3 , this is, 

weight 1 and 4,0 , as shows Fig. 2, since there is no delay in regularized signal and minimum error. 
The parameter   between 0,1 and 0,3 is not indicated, since in accordance with the obtained results they are 

accompanied by a delay in relation to recT . For   between 0,4 and 0,6 is the best range of smoothing, therefore, does 
not show delay, and errors are low. For   between 0,7 and 0,9 they are closer to interpolation than smoothing, although 
not accompanied by delay. While 0,1  represents an interpolation of data, since the vector smoothing has the same 
points. 
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In respect to the weights, values between H1  to H6  or even just H  smooth moderately depending on  , and 
values between H7  and H10  show a strong smoothing as shown in Fig. 3, which smoothing is performed for H10  
and 4,0 , this is, H, 333  . 

 

 
 

Figure 3. Strong smoothing with parameters H10  and 40,  

 
The studied parameters must be adapted according to the interference of the level of noise associated to the signal. 

Fig. 4a and Fig. 4b show the errors related to low and high noises, respectively, among the three best weights H  and 
the three best   as Tab. 1. For example, for a noise of 0,001 K, in accordance with Fig. 4a the best   and H  are 

6,0  and H3 , Fig. 5, to a noise of 0,05 K in accordance with the Fig. 4b the best   and H  are 4,0  and H5 , 
Fig. 6. 

 

 
 
Figure 4. Errors in respect to noises and the best   and H . (a) Low noise between 0,001 and 0,01, (b) Loud noises 

between 0,02 and 0,1 
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Figure 5. Signal smoothing for 0,001noise  K, 6,0  and H3  
 

 
 

Figure 6. Signal smoothing under 0,05noise   K, 4,0  and H5  
 

For validating the efficiency of the algorithm, experimental tests were conducted with temperature signals assigned 
by author Juliana de Oliveira, acquired during her doctorate performed from 2002 to 2006, at Thermal and Fluid 
Engineering Laboratory, School of Engineering of São Carlos, University of São Paulo, (NETeF - EESC - USP - São 
Carlos), which input data are: s 1,3 =   (Oliveira, 2006). It is observed in Fig. 7 that the smoothing by cubic spline was 
cable to reconstruct procT ; however peaks appeared in regT  that are considered a combination between the method of 
smoothing by cubic spline and the fact that the convective thermal processes are dependent on the convective 
coefficient, which in this work are previously estimated.  
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Figure 7. Reconstruction of the temperature signal obtained from experimental tests 
 

4. CONCLUSION 

 
This paper proposed the reconstruction of temperature of thermal processes that, due to ill-conditioning of inverse 

problem noise amplification occurs and therefore, requires a method of regularization which, in this case, was the 
smoothing by cubic splines. The smoothing by cubic spline is an off-line method of regulation, that is, it is necessary 
the set of points that will be smoothed to be complete so that the process may be started. Numerical and experimental 
tests showed its efficiency, combined with analysis of flexible parameters that have been set to optimize the results of 
this project, in addition to offering more technical stability. Resulting from analysis of numerical and experimental tests, 
the proceeding of this work will be focused on the addition of radiation in equating the problem, and at the same time, 
another work will be carried in order to determine the best convection coefficient, which thermal processes are 
dependent of. 
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