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Abstract. In this paper we study the behavior of a simple plane frame vulnerable to excessive vibrations caused by
seismic excitation. The mathematical model is proposed; derive the equations of motion for a simple plane frame
coupled to a magneto rheological damper excited by a real spectral function, the Kanai-Tajimi spectrum (seismic
excitation). The non-linear dynamics in system is demonstrated with an unstable behavior. The goal of this work is
suppress the unstable behavior using the combination of the MR damper with the State-Dependent Riccati Equation
Control technique. The State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR
method. SDRE techniques are quickly emerging as general design methods which provide a systematic and effective
tool for designing nonlinear controllers, observers, and filters. We also developed a SDRE control design with the
scope in to reducing the oscillatory movement of the nonlinear systems in a stable point. Here, we discuss the
conditions that allow us to the SDRE control feedback for this kind of non-linear system.
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1. INTRODUCTION

Natural Disasters are a great interest in engineering, and due to recent natural disasters have demanded prevention
policies and help to victims of the rulers of various countries and societies. The Natural Disaster studied in this work is
the occurrence of seismic actions on structures, more precisely the action of earthquake vibrations in civil structures.
The earthquakes often cause damages biological, materials, damage or ruin of human constructions may lead to a large
number of casualties and economic losses (Marcelino, 2008).

The objective of this work is minimize the actions of earthquakes in civil constructs, we propose the mathematical
model for a simple plane frame with seismic excitation type Tajimi-Kanai, thus causing instability in the structure,
where parameters were used to find chaotic behavior (Kanai, 1957). An alternative to minimize these seismic vibrations
and reduce oscillatory motion of the system to a stable orbit is the proposed structural control, a combination of active
and semi-active control strategies, with the function of the assist in preventing this natural disaster.

In the field of vibration control, new materials were developed as actuators and sensors enabling the design of more
robust and adaptive controllers for temporal variations and / or parametric plant. We highlight here the magneto
rheological fluid (MR) (Rainbow, 1948) being widely applied mainly in civil constructions. Currently, the MR damper
technology has emerged as the best solution for vibration semi-active control of seismic events that excite civil
constructions such as buildings and bridges. Several mechanical models have been proposed to describe the
performance of MR dampers and their behavior (Bodie and Hac, 200G:tH&c1996). A Bouc-Wen model, which
was described by Spencer et al. (1997), is still the most commonly used model to describe the MR damper hysteretic
characteristics.

In 1962 it was proposed by Pearson (1962) an active control technique and later expanded by Wernli and Cook
(2001), was independently studied by Mracek and Cloutier (2001) and alluded to by Friedland (1996). The state-
dependent Riccati equation for the dynamical system in discrete time steps to calculate a feedback control law that is
optimized around the system state-tracking control, in which the cost function to be minimized is quadratic in the
di_erence between the actual or estimated state and a commanded state trajectory. This technique is called State-
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Dependent Riccati Equation (SDRE) control (Coultiral, 1996; Mracelet al, 1996) techniques can be applied to
solve a wide range of problems (Chavarettal, 2011a).

In this work, is approached behavior of a structure vulnerable the actions of excessive vibration caused by seismic
excitation, to control these vibrations we propose the combination of two control strategies, the state-dependent Riccati
equation (SDRE) control and the magneto rheological (MR) damper.

The paper is organized as follows: in Section 2, we demonstrated the mathematical model for a simple plane frame
under seismic excitation. In Section 3, we modeled a simple plane frame includes an MR-damper. In Section 4, we
discuss and include the SDRE control design problem for vibration problem .In Section 5, we make the concluding
remarks of this paper. In Section 6, we make some acknowledgements. Finally, we list out the bibliographic references

2. DYNAMIC SYSTEM

An introduction to mathematical problem that is proposed by Chavarette and collaborators, and we studied the
stability of linear model (Chavaretes al, 2011b) and nonlinear model (Chavarette and Toniati, 2012), and soon after,
was made a study of the stability of the model with the coupling of a non-ideal excitation (Chavarette, 2013). For this
model, derive the equations of motion for a simple plane frame under excitation in vertical direction, as shown in Figure
1.

Iy
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jnl

Figure 1. Physical Model.

where X= a+ S+q,, % = b+S+0Q,, aandb are small displacement of mass &g ACOSt) .
The total kinetic energy (T) of the system is:

1 ‘o - L
FoL 00 S 97+ m(S+q,)7] (1)
The total potential energy (V) of the system is:

v:%[ K + k(0 ~ )°]

2)
The Lagrangian (L=T-V) is:
’E%[ 108 O+ n(SH Q) - kg’ - k(g — )]
3)
The Lagrange equation for the generalized coordigtis:
g $+ kq- k(g -q)=-cg 4
The Lagrange equation for the generalized coordiggtés:
Q’("g"' .S+ lﬁ(q_ q)z_cz(qZ_du) (5)
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Thus, the system can be modeled by the equations:

{ et ke M 9- 9+ ¢g=-mS
Tgr W g 9+ o(g-9=-mS

()
i} Kk A
0a+%0a—az(q2—oa)+%q=—8
ok &
b+ 2 (0, — ) +—2 (g - §) =5
m, m,
@
: _k1+k2 _k2
beglna)f——;wzz——,has
m, m,
b+ af—2 g+ g =8
m - om
.. c ,. , -
G+al(p-q)+—>(g-g)=-S
m (®)
Making X, =0, X, =¢;, X =0, and X, =0,:
X =X
)'(2:—0)12)(1+%X3—%X2—S
X =X,
% = G2 (% = %) +-2 (% = %) =S
e (©)

The excitement of a seismic movement through a model is characterized by seismic excitation through empirical
and /or theoretical models. In this paper, we use the type excitation Tajimi-Kanai (Kanai, 1957; Soong and Grigoriu,

1993), in which a real situation, the properties of the local soil produces a change in the dynamic properties of
excitement, given by

1+&2(f/f,)?

S.(f) =
(1) - (f 15,32 + @&, 19,)°

(10)

whereSqg(f)is the spectral density of the acceleration in the frequifgys the characteristic frequency of the mantles
of local soil andZg is the damping ratio of soil mantles. In practice, these parameters must be estimated from records of

local earthquakes and / or geological features. The spectral density function of Tajimi-Kanai can be interpreted as the
ideal type noise filtered by the soil extracts, this function is shown below.
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Figure 2. Time history for the external excitation type Kanai-Tajimi.

The Figure 3 illustrates the action of external excitation type Kanai-Tajimi (10) applied to the model (9). Figure 3b
shows the dynamics of unstable chaotic behavior of Lyapunov expoherts(40825),=-0.037170),=-0.053748 e
A=+1.85649), (Wolketal,1985) caused by this excitation.
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Figure 3. Action of Seismic Excitation on Dynamic Model. (a) Phase Poryail) € (xs,xs) and (b) Lyapunov
Exponents.

This behavior illustrated in Figure 3 often cause natural disasters causing losses biological, materials, damage or
ruin of human constructions may lead to a large number of casualties and economic losses. Aiming to minimize
vibrations and reduce the oscillatory motion caused in the system (9), in the following section proposes the application
of control technique to reduce this chaotic motion to a stable point

3. MAGNETO-RHEOLOGICAL DAMPER
A simple plane frame includes an MR-damper is modeled as shown in Figure 4a, the figure shows the mathematical

model previously proposed, see Figure 1, coupling with MR-damper. Figure 4b illustrates the Bouc—Wen model (Bodie
and Hac, 2000; Haet al, 1996) for MR damper proposed.
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Figure 4. (a) Physical Model with MR Damper and, (b) Bouc-Wen model for MR damper.

With the coupling of the MR-damper, we are rewriting the equation (9):

X =X,
K, = —afx, xS ~§F
X3 = X,
><4=w§(x1—x3)+Ez(>g— x)-S-F

where F is the MR damper force is proposed by Tusset and Balthazar (2013) are reproduced bellow;

F= ¢ x+ kx+a,z

(12)
Z-¢ |4 427 =€X| z|" +A%
(13)
32 85
F s X+ kox++_iz
(3e7%)+1 (128739)+1 (14)
. : . 85
C(|)=mx+kox+mz_|: (15)

This model can incorporate the fordg) MR-damper accumulator as an initial displacemegrand coefficient of
stiffnessky,. The characteristics of the variation of damping force depending on the velocity of the piston of the damper
and applied electric current in the coil and the parameterd 80, k, = 0, £&=0, n=2 and¢=0.1 are given by (Tusset and

Balthazar, 2013). The trajectories of the system under the action of the MR damper are illustrated in the following
figure.
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Figure 5. MR damper action on the dynamic model with seismic excitation. (a) Time Higjp(p) Time
History ), (c) Time History Xs), (d) Time History Xs), (€) Phase Portraixy(x,) and, (f) Phase Portrais(x,)

Figure 6 shows the dynamic behavior of the model (9) under the action of force (12). We can verify that the force of
the MR damper minimized the seismic vibration and reduce the oscillatory movement of the chaotic system into a small
orbit.
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Figure 6. Phase Portrait — non-controlled (gray line) and MR Damper (black line};Xg)and, (b) %s,Xs).
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4. THE CONTROL DESIGN

In this section, we develop a State-Dependent Riccati Equation control design, for the considered structural system
coupled to a magneto-rheological damper vibrating problem, reducing the oscillatory movement to a stable orbit. Next,
we present a summary of the used methodology.

It is well-know that the nonlinear dynamics (16) can be represented by the following linear structure having state-
dependent coefficients:

x= A x+ B(Yu (16)
where
(3= A .
B(X = g(x)

It is well-know that the nonlinear dynamics (16) can be represented by the following linear structure having state-
dependent coefficients:

It is also know (Coultieet al, 1996 ) that, in the multivariable case, there are an infinite number of ways to bring the
nonlinear system to SDC form. Associated with the SDC form, we have the following definitions

A(X)is an observable (detectable) parameterization of the nonlinear system (in 1@gioif the part

{C(X), A(X)} is pointwise observable (detectable) in the linear sense H[@D].
A(X)is a controllable (stabilizable) parameterization of the nonlinear system (in a r€djoif the pair

{ B(X), A(X)} is pointwise controllable (stabilizable) in the linear sense fo)(@l Q].

4.1 Application of the Control Design Theory

The nonlinear state model
x= f(X+ g(X)u (18)

where xOR", yOR", f(XOC*, g(XOC*, QXOC*, RXOCY, k=1 and where
QX =C (XC(x)=0, and R(X) > Ofor all x. Here it is assumed that (0) = 0and g(x) # O for all x. It may
also be desirable to sele@(X) and R(X) such that the performance indeX(X,U) in (19) is globally convex.

T
\tit{ %@ ¥ % J RYudt

(19)
with respect to the stateand controlu subject to the nonlinear differential.
We seek stabilizing approximate solutions of problem (19) - (18) of the foAng(X) where ¢is a nonlinear

function ofx.
The state (18) can written in a linear state dependent coefficient (SDC) form (22), where the vector

X= [ X X X5 X ,XS]T represents the system states the time dependelnit[]* is the vector of first derivatives of state,

xOO" is the control functionU is the force applied to control. Considering the initial and end conditions as:
X(t,) = Xy, X(0) =0. The state dependent coefficients are given by:
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0 001 0 0 0
- 001~ 00233 00011 0 - 06369
A=10%°*| O 0 0 001 0 (20)
004- 00214 00400- 0001 - 06369
0 17999 0 0 0 |
o
1
B(x)=|1 (21)
1
_l_
Q x= S(YS(x) (22)

St)=diad\a ], . @

Rewritten (16)

x= A%, X+

(24)

e i i
c

being x a vector.
The statex andu the control are given for functiorf( X) = A(X), (X = B(x)and d ¥ = X)X (Bankset al,

2007).
Considering the functional to be minimized is

;%T %@ ¥ % U R¥udt (25)
where
24 0 0 0 O]
0 24 0 0 O
Q= 0 0 24 0 O (26)
O 0 0 24 O
0 0 0 0 24
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ard R=[1].
Construct the nonlinear feedback controller via
- R (Y B (XP(X)x (27)
Sdve the state-dependent Riccati equation (SDRE)
K )xP PAX- POYR(QB (YP+Q(x)=0 (28)

Mracek and Cloutier, in the regiof) about the origin of the SDRE method provides a solution in an
asymptotically stabe limit cicle. In the case of a scalar solution, the method achieves an optimal solution to function
(27), even whe® andR are functions ox.

The SDRE control meet the first and second necessary condition of optitdisre, O (H is the Hamiltonian of the
ploblem (22)-(27)). The Hamiltonian for the control is:

H,x,ul):%( % Qx U R+ AT( A+ B(xu) (29)

The conditions necessary for the control are:

A A

x)u
2| o0x [1)4

= /( )9 X+ B(x)u, (30)
0= Ru+ B(x)/.

where
u= - R*(x)B" (x)A (31)
Assuming a co-state, it is known that
A= P(X)x (32)

Substituting (31) in (32) are obtained by SDRE control (28).

In the figure 7, show in (a) the trajectorids) of the system without control and with control.

Figure 7(c) and (d) we can see that the SDRE control moved the trajectory of the>syateixs to near the point
of origin (0,0) demonstrating improved performance for displacement. Figure 7(d) and 7(f) show a similar performance
for velocity. Figure 7(a) and (b) illustrate this behavior described.
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5. CONCLUSION

In this work, was approached behavior of a structure vulnerable the actions of excessive vibration caused by
dynamics loads as earthquakes. To perform this study, the mathematical model is proposed, are derived from the
equations of motion for a simple plane frame. Therefore we use the Hamilton principle, which is an alternative
formulation in which the effects of forces acting on the system are taken into account by means of changes in kinetic
and potential energy.

Figure 3 shows that the seismic excitation used, the Kanai-Tajimi spectrum, causes instability in the structure
dynamic producing a behavior chaotic.

An alternative to minimize vibrations unstable presented is the structural control. The structural control, basically
promotes changes in stiffness and damping of the structure, either by adding external devices, either by the action of
external forces. We can adopt various control models, such as the passive control, active control, hybrid control, and
semi-active control. We adopt the semi-active control and active control combined.

Semi-active control adopted was the coupling of the model (9) with the magneto-rheological damper, see (9)-(13).
Figures 5 and 6 illustrate the action of the semi-active control reduce the chaotic movement of this system to a small
stable orbit.

The combining the techniques of control (semi-active and active) proposed in section 4, improve the efficiency of
the controller when the displacement of the structure. Figure 7 shows the effectiveness of the combining the control
strategy taken to these problems and thus can aid in the prevention of a type of natural disaster.
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