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Abstract. This paper presents a study on a new modeling formalism of flexible structures cable used in underwater 

applications. Forces arising from the interaction between the fluid (water) and structure were modeled as proportional 

to the square of the relative velocity. An immediate application could be in umbilicals underwater vehicles type ROV 

(remotely operated vehicle). The primary basis for the formulation is to assume that the continuous flexibility is 

represented by a discrete approach, consisting of rigid links connected by elastic joints, allowing movement in three 

dimensions. Each elastic joint allows three independent movements, called elevation, azimuth and torsion (twist). A 

significant contribution of the proposed formalism is the development of a compact equation that allows obtaining the 

Lagrangian of the system directly and automatically, regardless of the number of links chosen to form a chain of rigid 

bodies connected by flexible joints to represent the continuous flexibility of the cable. 
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1. INTRODUCTION  

 

The dynamic modeling of cables had difficulties due to the natural complexity of the physical problem, especially 

when working in fact considering the cable spatial movement. Because of this, some articles have proposed simplified 

approximations to the dynamics of the cable, considering, for example, that the movement is restricted to a single plane 

[15]. In this article it is used the formulation proposed in Pereira et. al., [17] for dynamic modeling of a cable and a 

greater emphasis to the solution is presented. It is further considered that the cable is underwater and the considered 

drag is proportional to the square of the relative velocity between the fluid and the cable. 

Most of the literature on the subject deals with modeling of underwater cables using the finite element technique. 

WANG et. al. [1] used the Finite Element Method and investigated the vibrations of an underwater cable with a load at 

its end point. Gosling and Korban [2] described a finite element formulation for structural analysis of cables considering 
its flexibility finite and continuous. ROCHINHA et. al. [3] presented a numerical model for umbilical hyper-elastic 

cables with large displacements and rotations and solved the problem using equations discretized by the Finite Element 

Method. Other authors also used the finite element method for the structural dynamic analysis of flexible cables ([4], 

[5], [6], [7]). Some authors have developed their works with the implementation of a static analysis of a cable ([8], [9], 

[10], [11]), using the method of finite differences. Zhu et. al. [12] proposed a discrete model to determine the forces that 

an umbilical cable exerts on a ROV and showed numerical results. Raman-Nair et. al. [13] have used a discrete model 

to reproduce structural forces acting into a flexible marine riser under effects of flow and pressure of fluid within the 

riser. In [14] is presented a kinematic model for parallel mechanisms and also made analysis of singularities for special 

cases of parallel mechanisms. In [15] a simulation of the dynamics of a cable for kities is made considering each link 

with one degree of freedom mass spring damper model. The simulation is performed using MSC ADAMS software and 

the cable is considered moving in a plane. 

In this paper it is used a new formalism, which can be considered as an expansion pack of the modeling formalism 
proposed in Gomes et. al. [16], for a manipulator with a flexible link (in this case, the flexibility of the link is planar and 

each joint has a single degree of freedom). However, in the case of cable dynamic, the flexible joints have three degrees 

of freedom (azimuth, elevation and twist) and the flexibilty takes place in space. One main advantage of the proposed 

formalism is that dynamic variables of the model are physically measurable (angular positions and velocities) and thus, 

simulations can be performed and compared with experiments. Another advantage of this formalism is the compact 

single formula obtained for the Lagrangian of the system, regardless the number of degrees of freedom of the dynamic 

model. Dynamic model is obtaining as a function of physical variables such as positions and angular velocities, and this 

allows greater ease in interacting with other dynamics, such as a ROV at the free end of the cable, for example. The 

formalism also allows the inclusion of external dynamics to the model, such as those arising from currents, in the case 

of underwater cables. 
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2. THEORETICAL ELEMENTS 

 

Consider a cable as shown in Fig. 1, fixed at its top to a base and free at its bottom, where there is a mass mc. The 

main idea of the method is to divide the cable into small rigid elements (links li in black as shown in Fig. 1) connected 

by flexible joints that allow three independent free movements, entitled here as azimuth, elevation and twist, and 

relative to the previous link in the articulated chain. It should be noted that another motion could be considered: linear 

extension that has been neglected in this article. Each joint has a fictitious elastic nature and therefore three elastic 

constants with their respective damping are parameters that define the physical nature of the joint. In summary, the 

proposal introduces a method to determine the Lagrangian of the system in an algorithmic form, regardless of the 
number of elements chosen to divide the flexible structure. The application of the Euler-Lagrange equation to all 

degrees of freedom of the system allows obtaining the final dynamic model. 

 

 
Fig. 1. Flexible structure and its discrete representation. 

 

 

At each link the mass is lumped ( nmm,m,m 321 ) at its center of mass  11 z,y,x1 ,  22 z,y,x2 ,…, 

 nnn z,y,x  and  ccc z,y,x  are the coordinates of the center of mass of the load cm . In each fictitious joint the 

angles of azimuth, elevation and twist are considered: iaθ  is the azimuth angle, ieθ  the elevation angle and iTθ  the 

angle of twist, as shown in Fig. 3; i varies from 1 to the number of fictitious joints (n).  

The system iii ZYX  has ii ZO  as the axis parallel to the  0OZ  axis of the initial reference system (always in the 

vertical direction); the iiYO  is parallel to the projection of the previous rigid link (projection in the horizontal plane). In 

the example shown in Fig. 3, the projection of the link l1 in the horizontal plane has the same direction as the line r and 

the Y1 axis is placed parallel to the line r.  The axis ii XO  is orthogonal to the axis iiYO . Three elastic constants are 

considered at each joint, ie, in the i-th joint there is the elastic constants iTieia k,k,k , due to the angles of azimuth, 

elevation and twist, respectively.  

It is important to remark that due to the convention adopted, the elevation angles are symmetrical with respect to 

the Zi-1 axis in each αi plane, as illustrated in Fig.  2 (left) and the azimuth angle iaθ  is always the smallest angle 

between the axis Yi-1 and the plane αi. Another convention adopted is related to the base inertial frame ( 000 ZYX ).  

Consider an inertial geodetic system XGYGZG, as seen in Fig. 2 (right), with the ZG axis pointing to the center of the 

Earth and YG to the South Pole. The inertial system 000 ZYX  is placed such that 0Z  points to the center of the Earth 

and 0Y  in the same direction of the horizontal projection of the link 1 at the beginning of the first movement of the 

cable. 
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If the movement of the cable is caused by a known external perturbation (ocean current with known direction, for 

example) it is easy to find the angle between YG and 0Y . The azimuth angles of the links are then taken with respect to 

the axes Yi (i=0,1,…,n-1) and whenever there exist deformations of the cable, which cause movements, the cable 

geometric configuration can no longer be contained within a single plane. This means that if the cable is with elevation, 

azimuth and twist angles different from zero, all angles will tend to zero (in the absence of external torques) due to 
gravity and the internal elastic torques. 

The kinetic energy is defined by: 

 

           
T

C
R
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CE  is the kinetic energy due to rotation and 
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As each link has a cylindrical shape, RiI  is the moment of inertia about an axis perpendicular to link i passing through 

its center of mass, ie   2121 iiRi lmI   , and mi and li are the mass and the length of link i. 
i

TI  is the moment of 

inertia about a longitudinal axis of the link, and passing through its center of mass, ie   2

i
21 iiT rmI  , and ri is the 

radius of the link i. It is important to point out that it was neglected the kinetic energy due to rotational movement of 
azimuth and still considered, by approximation, that the elevation movements of the links take place in a plan (only for 

the calculation of the rotational kinetic energy due to elevation). The twisting motion is also considered as the cable was 

stretched, by approximation. As the rotational kinetic energy is less significant than the translation, these considerations 

do not compromise the quality of the model and significantly simplify the development of its differential equations. In 

summary, the emphasis is on translational kinetic energy and then the classical Euler-Lagrange formalism to obtain the 

dynamic model is used. 

 

        The potential energy is defined by: 
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where iek , iak  and itk  correspond to the elastic constants for movements of elevation, azimuth and twist, respectively, 

with i = 1, ..., n, where n is the number of fictitious joints, and the heights hi used in gravitational potential energy are 

defined as follows: 
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From the Eqs. (2), (3) and (4), the Lagrangian of the system can be written as: 
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From the Eqs. (5) and (6) and considering that 0000 =θ=θ=θ Tae  and 00 =h , results 
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3. THE LAGRANGEAN IN ANGULAR COORDINATES 
 

The Lagrangian equations depending only on the angular coordinates where obtained through the development of 

kinematic relations obtained from homogeneous transformations, as explained below. The first fictitious joint is placed 

at the origin of the reference system 000 ZYX , and the angles of azimuth aθ1  and elevation eθ1  are considered 

according to Figs. 3 and 4. Fig. 4 shows the first two reference systems, the links and the angles. From this figure it is 

concluded that the coordinates of the second fictitious joint in the 000 ZYX  reference system are: 
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and the coordinates of the center of mass of the first link (l1) are: 
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Fig. 2. Representation of the conventions. 

 

 
 

Fig. 3. Angles of azimuth, elevation and twist in the 

ith joint. 

 

 
Fig. 4. Geometric representation of the first two 

reference systems. 

 

 

 

 

A new reference system ( 111 ZYX ) is incorporated into the flexible structure, centered on the second fictitious 

joint, as illustrated in Fig. 3, according to the convention explained previously.  
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          Considering Eqs. (8), it can be shown that the homogeneous transformation relating the systems  000 ZYX  and 

111 ZYX  has the form: 
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Considering another link and placing the reference system 222 ZYX  at the third fictitious joint, the homogeneous 

transformation relating the systems  111 ZYX  and  222 ZYX  has the form: 
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Knowing that 
212 100 HH=H  it can be written: 
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Therefore, the coordinates of the center of mass of the second link ( 2l ) written in the inertial reference of the base (

000 ZYX ) are: 
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Adding one more link and proceeding in a similar way as explained previously, the coordinates of the center of mass of 

the third link wrote in the inertial reference of the base are: 
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In a general way, Eqs. (9), (13) and (14) suggest an algorithm to write the coordinates of the center of mass of any link 

of the chain, in the form: 
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The time derivatives of the Eqs. (15) and (16) are obtained in the forms: 
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           Using Eq. (7) and again considering 0000 =θ=θ=θ Tae  and 00 =h  the Lagrangian of the system can be 

obtained to the most general case of the 3n degrees of freedom and entirely written in terms of angular coordinates: 
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4. DYNAMIC MODEL 
 

After knowing the Lagrangian of the system, it becomes easy to obtain its dynamic model using  the Euler-

Lagrange equation, applied to each one of the 3n degrees of freedom. The dynamic model equation is written in the 

form: 

 

    mTfKCI


  ,                                                                                                                   (20) 

 

where 


 Taaaeee θθθθθθθθθ= 3T2T1T321321  (for the case of three fictitious joints).  θI


is 

the inertia matrix, C is the friction coefficient matrix, K is the matrix elastic constants and  


,f is the Coriolis-

Centrifuges torques. If the cable is submerged, the vector with the external torques has the form: 

 

eamm τ+τ+τ=T


                                                                                                                                                 (21) 

 

where mτ


 is the external torque applied, for example, by a ROV attached to the free end of the cable (or an ocean 

current, for example), aτ


 are the torques caused by drag forces due to the cable interaction with the fluid and eτ


 are 

torques due to the upthrust acting on each link. It is necessary to know the vectors of external forces as well as the 

ISSN 2176-5480

9346



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

vector position of the centers of mass of each link and also the center of mass of the end load are known, the torque are 

calculated from the vector product between the external forces and position of the points where the forces are acting on 

the cable. 

 Considering that the center of buoyancy of the links coincide with their respective center of mass, the 

buoyancy force has the same direction, but contrary to the gravitational force, which are equivalent to weights of the 

fluid volume because the links are submerged. Knowing the forces and their points of application, it is easy to obtain 

the torques due to these forces ( eτ


). The drag forces were modeled as being proportional to the square of the speed 

between the cable and the fluid. The drag forces known provide the determination of torques due to drag represented by 

the vector aτ


. 

 

 

5. SIMULATION RESULTS 

 
Until the present time there is no an experimental setup to validate dynamic models. It is intended as a 

continuation of this research to build an experiment consisting of a cable equipped with several sensors to identify the 

parameters and validate the model. However, values have been assigned to the parameters of a dynamic model and 

simulations were performed, whose aim is to show that the proposed model provides consistent results with the 

expected dynamics for a cable submerged in water or not. A steel cable is employed with a diameter of 0.02m and 

length of 3.2m, with one end attached to a motionless body and the other free, with a mass of 0.5kg. For the simulations, 

it was considered l1=lt/4, l2=lt/2 and l3=lt/4, where lt is the total length of the cable. This was a good choice that was 

found for the case of a model of a flexible link robot manipulator, as cited in reference [16]. However, it is still the 

subject of future research for the case of the dynamics of cables, ie, determining what is the best position to consider the 

fictitious joints. Probably, this can be clarified from the confrontation between experiments and simulations. The elastic 

constants,  friction coefficients and the coefficients for the drag due to the contact with the fluid were assigned and 
refined in successive simulations to obtain physically expected results. The parameters used were as follows: k1e=200; 

k2e=200; k3e=200  Nm/rd (joint fictitious elevation stiffness); k1a=100; k2a=100; k3a=100 Nm/rd (joint fictitious azimut 

stiffness); k1t=200; k2t=200; k3t=200  Nm/rd (joint fictitious azimut twist); c1e=10.5; c2e=0.5; c3e=0.5  Nms/rd (elevation 

viscous friction coefficients); c1a=4.2; c2a=0.2; c3a=0.2  Nms/rd  (azimut viscous friction coefficients); c1t=0.07; 

c2t=0.035; c3t=0.01 Nms/rd  (twist viscous friction coefficients). When the cable is submerged in water, the drag forces 

were modeled simply as being proportional to the square of the relative velocity between the fluid and the cable. The 

drag coefficient was set 180Nms2/rd2 and the forces are regarded as applied in the center of mass of each link. 

The state vector of the dynamic system has nine coordinates of angular positions and nine other coordinates for 

the respective speeds. This means that three fictitious joints were considered. The simulations presented below were 

performed with the initial state formed with 0.1rad for each coordinate position and with all coordinate velocities set 

equal to zero. The external forces considered are the drag and the upthrust, existing when considering the underwater 
cable. 

Fig. 5 shows the twist response, characterized by high frequencies and fast damping, as expected for cables 

whose material is steel. There are no significant changes in the twist response for cables out or underwater, because 

fluid dissipative effects due to the twist motion are negligible. 

 

 
Fig. 5.  Twist responses. 
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Fig. 6 shows the elevation and azimuth responses and also the spatial motion of the terminal load mc . For the 

angular displacement, the graphics located at the top of the figure corresponds to the angular displacement of the first 

link; the intermediate graphs correspond to the second link, and the latest graphs to the third link.  Note that the 

movement underwater is very damped, as expected because of the drag effects.  

 

 
 

Fig. 6. Elevation and azimuth responses and spatial motion of mc (Z coordinate was multiplied by -1). 

 

 

6. CONCLUSIONS 

 

This article investigated a new formalism for dynamic modeling of cables in underwater applications. The primary 

basis of the formulation is to assume that a continuous flexibility is represented by a discrete approach, consisting of 
rigid links connected by elastic joints, allowing the movement in the three-dimensional space. An important 

contribution of this proposition is the possibility of obtaining the Lagrangian of the system in an automatic way from a 

single equation, consisting of products and sums of terms that depend on the number of links considered, i. e., on the 

number of degrees of freedom to be adopted for the dynamic system. This equation to obtain the Lagrangian allows, for 

example, generating algorithms for the automatic determination of the dynamic model for any number of degrees of 

freedom. Values were adopted to the parameters of a dynamic cable model and simulations were performed, just to 

show that the model produce results consistent with the expected dynamic behavior of a cable underwater.  

In the continuation of this research the authors pretend to develop an experimental support consisting of a cable and 

various sensors such as strain gauges and accelerometers to identify the model parameters and then to validate the work 

madding comparisons between numerical simulations and experiments. Another point is to determine the ideal length of 

the links. A study to clarify this point should be realized. 

 
 

7. REFERENCES 

 

[1] WANG, P.H., FUNG, R.F. and LEE, M.J. Finite Element analysis of a three-dimensional underwater cable with 

time-dependent length. Journal of Sound Vibration. Volume 209, Issue 2, January 1998, Pages 223-249. 

[2] GOSLING, P.D. and KORBAN, F.A. A bendable finite element for the analysis of flexible cable structures. Finite 

Elements in Analysis and Design. 38 (2001)  45-63. 

[3] ROCHINHA, A., SAMPAIO, R., and LE TALLEC, P. O Método do Lagrangeano Aumentado no Estudo de Cabos 
Umbilicais. Revista Internacional de Métodos Numéricos para Cálculo y Diseño em Ingenieria. Vol. 6,1, 97-108 (1990). 

[4] SRINIL, N., REGA, G. and CHUCHEEPSAKUL,S. Two-to one resonant multi-modal dynamics of 

horizontal/inclined cables. Part I: Theoretical formulation and model validation. Nonlinear Dyn. (2007) 48:231-252. 

[5] CORDOVÉS, D., Análise de Confiabilidade Estrutural de Cabos Umbilicais. Dissertação de Mestrado. Escola 

Politécnica da Universidade de São Paulo, 2008. 

ISSN 2176-5480

9348



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

[6] YOON, J.W., PARK, T.W. e YIM, H.J. Fatigue life prediction of a cable harness in an industrial robot using 

dynamic simulation.  Journal of mechanical science and technology. ISSN 1738-494X, 2008, Vol.22, nº 3, pp. 484-489. 

[7] BUCKAM, B., DRISCOLL, F.R. and MEYER, N. Development of a Finite Element Cable Model for Use in Low-

Tension Dynamics Simulation. J. Appl. Mech, July 2004-Volume 71,Issue 4, 476 (10 pages). 

[8] MATULEA, I.C., et all. On the equilibrium configuration of mooring and towing cables. Applied Ocean Research, 

30 (2008) 81-91. 

[9] WANG, F., HUANG, G. and DENG, D. Steady State Analysis of Towed Marine Cables. J. Shanghai Jiaotong Univ. 

(Sci), 2008, 13(2):239-244. 

[10] BLIEK, A. Dynamic analysis of single span cables. Cambridge, 1984. 295 f. Thesis (Doctor of Philosophy) – 

Departament of Ocean Engeneering, Massachusetts Institute of Technology). 

[11] HOVER, F.S., GROSENBAUGH, M.A. and TRIANTAFYLLOU, M.S. Calculation of Dynamic Motions and 

Tensions in Towed Underwater Cables. IEEE Journal of Oceanic Engineering, Vol. 19, No. 3, July 1994. 

[12]  ZHU, K.-Q., ZHU, H.-Y., ZHANG,Y.-S. and GAO, J. A multi-body space-coupled motion simulation for a deep-
sea tethered remotely operated vehicle. Journal of Hydrodinamic. 2008, 20(2):210-215. 

[13] RAMAN-NAIR, W. and WILLIAMS, C.D. Vortex-Induced Response of a Long Flexible Marine Riser in a Shear 

Current. International Symposium on Technology of Ultra Deep Ocean Engineering. Feb 1-2, 2005, Tokyo, Japan. 

[14] I. A. Bonev, C. M. Gousselin. Singularity loci of spherical parallel mechanisms. Proceedings of IEEE International 

Conference on Robotics and Automation. Barcelona, Spain, April, 2005. 

[15] J. Breukels, W. J. Ockels. A multi-body dynamicos approach to a cable simulation for kities. IASTED Asian 

Conference on Modelling and Simulation, Beijing, China, Octuber, 2007. 

[16] S. C. P. Gomes, V. S. Rosa and B. C. Albertini, “Active control to flexible manipulators,” IEEE/ASME Trans. on 

Mechatronics, vol. 11, no. 1, pp. 75–83, USA, 2006. 

[17] Pereira, A. E. L., Gomse, S. C. P. and Bortoli, A. L. A new formalism for dynamic modeling of cables. 

Mathematical Modeling and Computer Science, November, 2013. 

ISSN 2176-5480

9349




