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Abstract. In order to solve the average velocity field in the Reynolds Average Navier Stokes approach, closure 
equations that relate the Reynolds stress tensor to the mean kinematic tensors are necessary. While the Boussinesq 
hypothesis assume a linear relation between the Reynolds stress tensor, R, and the rate-of-strain tensor, D, other 
hypothesis can be tested. In particular the relative vorticity, W*, the vorticity computed with respect to the rate of 
rotation of the eigenvectors of D, is an objective tensor that can play an important role on a number of turbulent flows. 
It can be shown that the ability of the fluid to avoid been stretched by the flow is related to a high intensity of the non-
persistence-of-straining tensor, DW*-W*D. Based on this tensor and on D, different sets of basis tensors can be used 
in order to express the Reynolds stress tensor. In the present methodology, experimental results of the turbulent 
boundary layer flow are used to compute R, D, and DW*-W*D and by decomposition tensor theorems, the coefficients 
of a variety of models are computed and indices that indicate the degree of agreement between the different models and 
the Reynolds stress tensor are calculated. Depending on the chosen model, different regions of the flow are better 
captured and an analysis associating the tensor basis and the prediction capacity is provided. 
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1. INTRODUCTION  
  

Numerical simulations of turbulent flows have become a valuable tool to predict the behavior of such flows, not 
only for problems of scientific interest, but also it has been largely applied for several engineering applications. This 
applications concerns different fields with industrial and practical applications: aeronautics and automotive engineering, 
meteorology, environment, etc.  

Attempts to predict the turbulent characteristics have been made with different computational approaches, which 
can generally be classified as Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) or Reynolds 
Averaged Navier–Stokes (RANS). Direct Numerical Simulation resolves the full 3D transient Navier-Stokes equations, 
without introducing any modeling, therefore, a very fine mesh and time step is required. The results from the DNS are 
very accurate and reveal valuable information on the turbulence structures and are very useful to develop second-order 
turbulence models. However, the DNS approach is limited to low Reynolds numbers. An alternative to the DNS 
approach is the technique of LES. The LES approach is a numerical technique used to solve the partial differential 
equations governing turbulent fluid flow. The idea is to solve directly the large scales which are responsible for carrying 
most of the flow energy and to model the small scales within the mesh size, where the energy is dissipated. Therefore, 
the LES approach requires a sub-grid model. Although 3D transient Navier-Stokes equations are solved, the mesh size, 
as well as the time step, does not need to be as small as with the DNS methodology, resulting in less computational 
effort, but more effort than those methods that solve the Reynolds-averaged Navier–Stokes equations (RANS). The 
RANS approach requires the derivation of modeled equations from the instantaneous Navier–Stokes equations using the 
Reynolds decomposition. Reynolds decomposition refers to separation of the flow variable into the mean component 
and the fluctuating component. As a consequence of the average process, additional terms named as turbulent Reynolds 
Stress appear on the equations and need to be modeled. When using this approach, the success of computational results 
depends heavily on the choice of the Reynolds Stress Models. In this study, Explicit Algebraic Reynolds Stress Models 
(EARSM) is used. These EARSM models propose the relations between Reynolds stress tensor, mean rate of 
deformation and the vorticity tensors, and they are able to capture more characteristics of the turbulent flows 
(anisotropy, near-wall behavior). 

ISSN 2176-5480

8339



A.O. Nieckele,.Thompson, R.L., Mompean, G. 
Analysis of different levels of approximation of the Reynolds stress tensor for a boundary layer flow 

There are two ways to evaluate RANS turbulence models: a) use the model in a Navier–Stokes solver (a posteriori 
test) or use mean fields evaluated from DNS or from experimental data in the model and compare with the Reynolds 
stress computed with DNS or with the measured values (a priori test), see e.g. Mompean et al. (1996); Naji et al. (2004), 
Schmitt (2007). One of the most widespread closure assumptions used in turbulence modeling is that of an eddy 
viscosity linking the deviatoric Reynolds stresses tensor linearly to the local mean strain. This type of closure is known 
to be incapable of predicting some well-established turbulent phenomena such as the effects of streamline curvature, 
rotation, and turbulence induced secondary flows near corners.   

The focus of this paper is to present a methodology to evaluate the Reynolds stress dependence upon mean 
kinematic tensors. The proposed methodology is based upon tensor decomposition theorems that allow determination of 
the orientation of the Reynolds stress tensor from the experimental data of boundary layer flows. The prediction of the 
turbulent boundary layer is important for several practical applications, aircrafts, ships, submarines and offshore 
platforms.  In this work, experimental data of turbulent boundary layers from Carlier and Stanislas (2005), Stanislas et 
al. (2008) are used. In these works the authors presented a study concerning the identification of vertical structures in 
the turbulent boundary layer. Coherent structures corresponding to hairpin vortex are analyzed through stereoscopic 
particle image velocimetry. Measurements using hot-wire anemometers were also made in the boundary layer and is 
used in this work. Through comparisons using these experimental boundary layer databases, the methodology presented 
below allows to quantify how good the tensorial formulation of the Reynolds stress tensor is, and compute the scalar 
coefficients appearing in the six models tested in this work. Using this methodology, it is shown in this paper the 
improvement of the modeling to produce accurate RANS turbulent models.    

The outline of the paper is as follows. Section 2 presents the methodology based upon tensor decomposition 
theorem. The results are presented in section 3.  Conclusions are drawn in section 4. 
 
2. METHODOLOGY 
  

The following usual Reynolds decomposition notations will be used: ( ) indicates the time average operation and 
a single quote ( ' ) denotes the fluctuations with respect to the average. The Reynolds stress tensor, R, is defined 
through 

 
uuR   (1) 

 
and the traceless Reynolds stress tensor a is defined as 

 

R),Ra (tr
3
1

  (2) 

 
where tr(.) is the trace operator. 
  
2.1 Tensor decompositions 
  

Two kinds of decompositions of a tensor with respect to a second one have been employed. These two kinds were 
shown by Thompson et al. (2010) to be the only ones that decouple the tensor into a part which is coaxial and another 
which is orthogonal to the second one and at the same time these two parts of the decomposition are orthogonal to each 
other. One decomposition is referred to as proportional-orthogonal and the other one in-phase-out-of-phase 
decompositions. The proportional-orthogonal decomposition of a tensor U with respect to a tensor V is given by 
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where the first term on the r.h.s of Eq. (3) is proportional to V, while the second one is orthogonal to V. The in-phase-
out-of-phase decomposition is given by 
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where the fourth order tensors that appear in Eq. (4) are given by  
 

V
i

V
i

V
i

V
i

VV eeee1 


3

1i   (5) 
 

ISSN 2176-5480

8340



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

where the unit vectors are eigenvectors of V and 
 

pqqp eeee1    (6) 
 
where the Einstein convention is assumed. The mathematical analysis of these decompositions is discussed in 
Thompson (2008). 

These two tensor decompositions were applied to the Reynolds stress tensor with respect to two kinematic tensors: 
the symmetric part of the velocity gradient, D and the non-persistence-of-straining tensor P, defined by 

 
P = D W* – W* D (7) 
 

where W* is the relative vorticity tensor, defined as the vorticity measured with respect to the rate of rotation of the 
eigenvectors of D. Since D and P are orthogonal, it is possible to produce 6 levels of representations of the Reynolds 
stress, depending on the combinations of the decompositions adopted. Besides that, indices of adherence to quantify the 
ability of the particular model to capture the Reynolds tensor were applied. 
 
2.2 The models 
  

The six models presented in the present work are 
 
MI : aI =  D (8) 
 
MII : aII =  I + D DD2 D2 (9) 
 
MIII : aIII =  I + D DD2 D2 + P  P  (10) 
  
MIV : aIV = D D P  P  (11) 
 
MV : aV =  I + D DP PP2 P2  (12) 
 
MVI : aVI = ( + ) I + D DD2 D2P PP2 P2  (13) 
 

and the indexes, Idxi; i  { I; II; III; IV; V; VI } that measure the quality of the approximations are given by 
 

2

2
1

tr
tr

cos21
a
aiiIdx 


  (14) 

where a is the anisotropy Reynolds stress tensor calculated from the experiments. 
The quantities Idxi; are local. It is straightforward to infer that, at any point of the domain, the following inequalities 

hold: 
 
0  ≤ IdxI  ≤ IdxII ≤ IdxIII ≤ IdxVI ≤ `1  (15) 
 
0  ≤ IdxI  ≤ IdxIV ≤ IdxV ≤ IdxVI ≤ `1  (16) 
 
0  ≤ IdxI  ≤ IdxIV ≤ IdxIII ≤ IdxVI ≤ `1  (17) 
 
From the inequalities above, it can be established the different complexity levels of approximation. One important 

issue is to address the differences between models of the same level of complexity such as the pair MII and MIV and the 
pair MIII and MV . 
 
3. RESULTS AND DISCUSSION 
  

The models described in the previous section were applied to the experimental data of a boundary layer flow 
(Carlier and Stanislas, 2005, Stanislas et al., 2008). The friction velocity u is measured directly by PIV very near to the 
wall, with an accuracy which is of the order of 1%. Hot wire probe was employed to measure the mean flow velocity U 

and the standard deviation 2u . The Reynolds stress vu  and standard deviations 2v  and 2w were measured with 
cross wires probe. The axial, normal and transversal velocity components were measured at different normal x2 
positions. Their values were interpolated to the same position in order to allow the determination of the Reynolds stress 
tensor corresponding to each model. 
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The momentum Reynolds number Re is based on the external velocity U∞ and the momentum thickness , while 
the frictional Reynolds number is based on boundary layer thickness δ and friction velocity u
  

Re= U∞ /     ;        Re = u /  (18) 
   
where  is the kinematic viscosity,  is the density and  the molecular viscosity. 

Four cases were considered to evaluate the tensor decomposition technique. Table 1 presents the corresponding 
Reynolds numbers. 

 
Table 1. Test Cases 

Case 1 2 3 4 
Re 8171 11454 14505 20831 
Re 2680 3891 4941 7164 

 
Figure 1 illustrates the measured velocities variation along the dimensionless wall distance y+=u y /  

corresponding to Re = 2680. The velocities were normalized with the friction velocity u. 
 

      
                                        (a) mean velocity, U                                                    (b) Reynolds stress vu  

 
                                   (c) standard deviation 2u                                          (d) standard deviation 2v      

 
(e) standard deviation 2w  

Figure 1. Experimental velocities, Ret=2680. 
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Figure 1a corresponds to the mean axial velocity, while Fig. 1b shows the Reynolds stress. The standard deviation in 
the x, y and z directions are shown in Figs. 1c, 1d and 1e, respectively. From these data, the mean kinematic tensors 
corresponding to the different models presented in the previous section were determined, and the normalized index of 
each model was evaluated. 

Figures 2 and 3 present a comparison of the dimensionless traceless Reynolds stress tensor, obtained with each 
model, with the experimental data, for the smallest and highest Reynolds number investigated. The traceless Reynolds 
stress tensor is defined as 2

ua/a   where a = R – (1/3) tr (R). Note that, as already mentioned, the Reynolds number 
does not influence the behavior of the dimensionless Reynolds stress.  

 

 

(a) xxa  , Re=2680                                                           (d) xxa  , Re=7164  

 

                            (b) yya  , Re=2680                                                           (e) yya  , Re=7164     

 

                        (c) zza    , Re=2680                                                         (f) zza    , Re=7164 

Figure 2. Components of the traceless Reynolds stress tensor. Re=2680 and Re=7164. 
 
Analyzing Fig. 2, it can be seen that Model I cannot predict the normal contribution of the Reynolds stress. Model II 

predicts the same distribution for xxa  and yya , and fails to predict zza . Models III, V and VI are able to obtain for the 
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three normal components of the traceless Reynolds stress, with exactly the same distribution as measured tensor. 
Although Model IV predicts quite well xxa  and yya , it fails to predict zza . The shear stress contribution is shown in 
Fig. 3 for both Reynolds numbers and all models. As expected, for this kind of simple flow, all models present an 
excellent result for xya , with perfect agreement with the experimental data. 

 

 

                                     (a) xya  , Re=2680                                                  (b) xya  , Re=7164                

Figure 3. Components of the traceless Reynolds stress tensor. Re=2680 and Re=7164. 
 

To help analyze the results, it should be noted that, with the available experimental data, the symmetric part of the 
velocity gradient D and the Reynolds stress tensor R have the following form 
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The correlation coefficient regarding the six models is presented in Fig. 4 for all Reynolds numbers. Note that the 

correlation index is equal to one for models III, V and VI. Examining Fig. 4a, it can be seen that the Reynolds number 
does not affect the correlation index, since similar results were obtained for all Reynolds numbers. The smallest 
correlation index corresponds to model I, followed by model II. Both models present similar behavior, with an increase 
of the index as y+ increases. Model IV presents an approximately constant correlation index, along the boundary layer, 
approximately equal to 0.8. 

Comparing the traceless Reynolds stress tensor of each model ( kM , k=I ... VI) with the Reynolds stress R, it is clear 
that all models are able to capture the shear component. Model I cannot capture the normal contribution and Model II is 
not able to capture the flow anisotropy, since xxa = yya  and zza  is zero. This explains why their correlation index is 
low. The index increases away from the wall, because the stress contribution diminishes in that direction. The 
correlation index of Model IV is high (0.8), because it can also predict reasonable well xxa  and yya . The failure to 

predict zza  is reflected in the reduction of the correlation index. Models III, V and VI can predict all traceless Reynolds 
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stress components, and the correlation index is equal to one throughout the whole boundary layer. These results indicate 
the importance of considering the non-persistence-of-staining tensor P in the models. 

 
 

  

                                         (a) Re=2680                                                                 (b) Re=3891 

 

                                         (c) Re=4941                                                                 (d) Re=7164 

Figure 4. Index of several models. Re=2680, Re=3891, Re=4941 and Re=7164 
 
 

4. CONCLUSION 
 
Six different models for representing the anisotropic Reynolds stress tensor were presented. They are based on 

linear and non-linear descriptions as functions of the rate of strain and persistence of straining tensors. The use of the 
rate of strain tensor is customary in the literature. There are examples of using the non-objective version of the 
persistence of straining tensor, with the vorticity in the place of relative-vorticity tensor. These tensors have the property 
of being orthogonal to the rate of strain tensor and, therefore, are able to explain parts of the Reynolds stress tensor 
which are impossible for the rate of strain.  

Experimental data of a boundary layer flow were employed to determine the Reynolds stress according to the six 
models and correlation index were calculated to allow evaluation of their performance. All models were able to 
determine accurately the shear stress. Models III, V and VI showed a superior performance, being able to represent 
correctly all traceless Reynolds stress components. The correlation index of Models I and II were low, since these 
models cannot capture flow anisotropy. For this type of flow, Model IV was able to predict reasonable traceless 
Reynolds stress. 

The results of the present work can be useful to build models for the Reynolds stress tensor, by constructing the 
dependence of the coefficients as functions of the relevant parameters. 
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