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Abstract. Some methods of Active Vibration Control (AVC) are model-based; in these cases the parameter variations 
have an important issue in the performance of the system. As it is not possible to know in advance the precise values of 
these parameters of the mechanical system, a possible alternative is to design robust controllers that take into account 
the uncertainties involved. In this sense, this paper presents an active vibration control technique that is dedicated to 
rotating machinery by incorporating Electromagnetic Actuators (EMA) so that uncertainties are taken into account 
with respect to the parameters of the system. The EMA’s gains are determined by using Linear Matrix Inequalities 
(LMIs). The LMIs are a powerful tool in the cases the system presents uncertainties in its parameters. The Kalman 
Estimator was used to access the modal states of the system. The model of the rotating machinery is obtained by using 
the Finite Element Method (FEM). Simulation results illustrate the potential use of the methodology conveyed in 
engineering applications. 
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1. INTRODUCTION 

 
A number of types of actuators are available for control purposes, such as Piezoelectric Stack Actuators, Active 

Magnetic Bearings (AMB), and Electromagnetic Actuators (EMA). The Piezoelectric Actuators demonstrated to be 
very effective in rotor vibration control (Palazzolo et al, 1993). More recently (Simões et al, 2007) presented an active 
modal control strategy for flexible rotors by using two orthogonal PZT stack actuators installed at one of the supports of 
the machine, i.e., the PZT actuators were attached directly to the ball bearing, which allows the insertion of stiffness to 
the system. The AMB have been successfully applied in industrial turbomachines (Schweitzer et al, 2009). The AMB 
provide control effort through the application of lateral forces without mechanical contact between the rotor and the 
stator. However, they have some disadvantages, technical complexity and continuous power consumption (Horst et al, 
2004), which is due to rotor support requirements. 

 The EMA uses the same physical principle of the AMB, but only in terms of the lateral force without contact, since 
the EMA is not used to support the rotor. The use of EMA results in a hybrid bearing. The active control using EMA 
was achieved successfully both numerically and experimentally in light structures (Der Hagopian et al, 2010). The 
advantage of EMA is due to the simple electromechanical structure associated with the control action, without 
mechanical contact. 

In the context of countless demands of mechanical systems with optimal performance, this work proposes to design 
a robust controller for a rotor system by using electromagnetic actuators (EMAs). The EMAs were arranged around the 
rotor as shown in Fig. (1). Together with the ball bearing, the resulting architecture forms a so-called hybrid bearing.  

 

 
 

Figure 1. Hybrid bearing. 
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The linear quadratic regulator (LQR) approach, solved by linear matrix inequalities (LMI), allows for the calculation 
of the gain matrix of the feedback controller.  

LMI is a useful tool for constrained problems in which the parameters vary according to a given range of values. 
Once formulated in terms of LMIs the problem can be solved efficiently by convex optimization algorithms (Boyd et al, 
1994). The advantage of using LMIs for determining the controller gain matrix is the possibility of assuming that the 
parameters of the model involve uncertainties. Then, a robust vibration control system can be designed. 

 
2. ROTOR FINITE ELEMENT MODEL 

 
The dynamic response of the considered mechanical system can be modeled by using principles of variational 

mechanics, namely the Hamilton`s principle. For this aim, the strain energy of the shaft and the kinetic energies of the 
shaft and discs system are calculated. An extension of Hamilton`s principle make possible to include the effect of 
energy dissipation. The parameters of the bearings are included in the model by using the principle of the virtual work. 
For computation purposes, the FEM is used to discretize the structure so that the energies calculated are concentrated at 
the nodal points. Shape functions are used to connect the nodal points. To obtain the stiffness of the shaft the 
Timoshenko`s beam theory was used and the cross sectional area was updated. The model obtained as described above 
is represented mathematically by a set of differential equations (Lalanne et al, 1997) as given by Eq. (1). 

 

 
            )()()()()( tFtFtKKtCCtM EMAggb      (1) 

 
where  )(t  is the vector of generalized displacements; [M], [K], [Cb], [Cg] e [Kg] are the well-known matrices of 
inertia, stiffness, bearing viscous damping (that may include proportional damping), gyroscopic (with respect to the 
speed of rotation), and the effect of the variation of the rotation speed;    is the time-varying angular speed, and {F(t)} 
e {FEMA(t)} are the forces due to the unbalance and to the electromagnetic actuator, respectively. 

The use of a larger number of degrees of freedom (dof) results in a high computational cost. Normally it is desirable 
to reduce the size of the model. There are several methods that can be used for this aim [20], however, the pseudo-
modal method is used in the present paper to reduce the model size. The reduction is achieved by changing from the 
physical coordinates  )(t  to modal coordinates {q(t)}as follows: 

 

    )()( tqt   (2) 

 
where    is the modal basis that contains the m first modes of the non-gyroscopic conservative associated system. 

By using the transformation given by Eq. (2) in the Eq. (1), and by converting the new set of differential equations 
to the space-state form results: 
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The number of considered modes is defined according to the controllability and observability of the system 
represented by Eq. (3). In this work the number of modes considered is four (two for each direction) so that the system 
is controllable and observable. The rotor´s model was developed based on the rotor test rig presented in Fig. (2). 

 

 
Figure 2. Rotor Test Rig. 

 
Figure 3 presents the FE model in which 32 finite elements are used to represent the dynamic behavior of the rotor. 

It is composed of a flexible steel shaft with 80 mm length and 17 mm diameter (Esteel = 2.1 X 1011 Pa, ρsteel = 7850 kg/m3, 
and steel = 0.3), two rigid steel discs located at the nodes #13, and #22, respectively, and two roller bearings (B1 and B2 
located at the nodes #4 and #31, respectively). The nominal stiffness and damping parameters of the bearings are 
summarized in Tab. (1). Damping was added in the rotor by means of a proportional damping ( KMDp   ;  M  

and  K  being the mass and stiffness matrices, respectively) with the following nominal coefficients:  = 10 and   = 
1 X 10-5. Displacement sensors are orthogonally mounted (along the horizontal and vertical directions) at the nodes #8 
and #25 to collect the shaft vibration. The first twelve vibration modes were used to generate the displacement 
responses of the rotor model along the orthogonal directions. The Electromagnetic Actuators (EMAs) are located at the 
node #4, which corresponds to the position of the bearing B1. 
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Figure 3. FE model of the considered rotor (- - - - Bearing;  

- - - - Disc; - - - - Coupling # node). 
 
The properties of the bearings are presented in Tab. (1). 
 

Table 1. Physical characteristics of the bearings  
Characteristic Value 

Bearings 

kx1 (N/m) 1.00X106 
kz1 (N/m) 1.30X106 
kx2 (N/m) 1.00X108 
kz2 (N/m) 1.00X108 

cx1 (N.s/m) 60 
cz1 (N.s/m) 60 
cx2 (N.s/m) 100 
cz2 (N.s/m) 100 

4 13 22 31 

8 25 
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3. LINEAR MATRIX INEQUALITIES 

 
The history of LMIs in the analysis of dynamical systems goes back more than 100 years. In 1890, Aleksandr 

Mikhailovich Lyapunov presented his work, introducing the Lyapunov Theory (Boyd et al, 1994), showing that the 
differential equation: 

  
    )()( txAtx   (4) 
 

is stable (all the trajectories converge to zero) if and only if there is a positive-definite matrix P such that: 
 
       0 APPA T  (5) 
 
The inequality given by Eq. (5) is known as the Lyapunov inequality. 
 
Currently, LMIs have been the object of study to many important researchers around of the world focusing a number 

of different problems: control of continuous and discrete systems in the time domain, optimal control and robust control 
(Van Antwerp et al, 2000; Silva et al, 2004) model reductions (Assunção, 2000), control of nonlinear systems, theory of 
robust filters (Palhares, 1998), and detection, location and quantification of faults (Abdalla et al, 2000; Wang et al, 
2007). 
 
3.1 Linear Quadratic Regulator using LMIs 

 
 Several authors have considered applications of LQR, however, not so many discuss the LMI version of this 
controller (Johnson et al, 2002). A version of LQR solved by LMIs is presented by Erkus et al (2004). The authors of 
this contribution show that the problem LQR-LMI is described by: 
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where N is a noise position vector, [Xlmi] and [Ylmi] are the LMIs solutions and tr( ) denote the matrix trace. 
 The controllers´gain are obtained substituting the matrix  A  by      KGBA u  in Eq. (7) and solving the Eqs. (6) 
and (7), where the signal control is        tXKGtu   (feedback state control). 
 
3.2 Design of robust controllers using LMIs 

 
The major advantage of LMI design is to enable specifications such as stability degree requirements, decay rate, 

input limitation for the actuators and output peak bounder. It is also possible to assume that the model parameters 
involve uncertainties (Silva, 2005).  

The LMI is a very useful tool for problems with constraints where the parameters vary according to a range of 
values. The design of robust controllers used in this contribution was presented by Assunção et al (2001).  A system 
with politopic uncertainties is stable if there is  X  e  G  such as the following LMIs are feasible. 
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where i=1,2,…,m and m is the number of uncertainties. 

  
 
Equation (6) was used for the robust control using LQR, and the constraints (Eq. (7)) were arranged in the form 

given by Eq. (8). 

ISSN 2176-5480

815



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

4. ELECTROMAGNETIC ACTUATOR (EMA) 

 
The EMA is used to apply the control force to the rotor system. The forces provided by the EMA are inversely 

proportional to the square of the sum of nominal gap and displacement. With these characteristics, each coil applies a 
force that is given by Eq. (9). 
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(9) 

 
The parameters that define the geometry of the coils (a, b, c, d e f) are shown in the Fig. (2); µ0 e µr are the 

magnetic permeability in the vacuum and the relative permeability of the material, respectively. µr is determined 
experimentally. The gap is given by e and  is the gap due to the vibration of the rotor at the position of the 
electromagnetic actuator. 
 Four EMAs are used in the system, i.e., two for each control direction (x and z). The EMA applies only attraction 
force and each actuator acts separately. The ferromagnetic circuit used by each actuator is presented in Fig. (4). The 
geometry and properties are presented in Tab. (2). 
 

 
Figure 4. Ferromagnetic circuit. 
 

 Table 2. Parameters of the coil. 
µ0 (H/m) 1.26 X10-06 

µr 950 
N (spires) 250 
a (mm) 9.5 
b (mm) 38 
c (mm) 28.5 
d (mm) 9.5 
f (mm) 22.5 
e (mm) 0.5 

 

 In the system, there are four actuators. Two in each plan: x plan, actuators 1 and 2, and z plan, actuators 3 and 4. 
Figure 5 presents the arrangement. 
 

 
Figure 5. The structure of actuator in the rotor (Morais et al, 2012). 

 
5. CONTROL APPROACH 

 

Active modal control is used as control strategy for a rotor system in which an electromagnetic actuator provides 
the control effort, as shown in the Fig. (6). The advantage of using active modal control is that this technique is very 
effective for flexible structure applications, requiring a reduced number of actuators and sensors. The estimator is 
responsible for determining the modal states used in the controllers. The Kalman Estimator is able to estimate the states 
by using noisy measurement signals.  
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Figure 6. Active modal control based on modal state feedback control. 

 
In this work, robust controllers were developed by using Eqs. (6), (7) and (8). 
 

6. RESULTS 

 
Uncertainties were taken into account in the parameters of matrix [A], Eq. (3). Regarding the natural frequencies, 

uncertainties of ±10% were considered. To proceed as similar as possible to experimental conditions, band-limited 
white noise is superimposed to the calculated displacements. Then, the number of modes considered was analyzed in 
terms of their observability and controllability.  For the 4 modes chosen, the system is observable and controllable. The 
Tab. (3) presents the natural frequencies of the system, with and without uncertainties. 

 
Table 3. Natural frequencies (rad/sec). 

Mode Without -10% +10% 
1 160.30 143.38 175.60 
2 160.30 143.38 175.60 
3 623.02 557.24 682.48 
4 623.02 557.24 682.48 

 
With the uncertainties shown in Tab. (3), the uncertain models were obtained. As four uncertainties were 

considered, 16 uncertain models result. The Tab. (4) presents the 16 uncertain model configurations (matrix Ai). 
 

Table 4. Uncertain Model(Matrix Ai). 

Ai 
Mode 1 Mode 2 Mode 3 Mode 4 

-10% +10% -10% +10% -10% +10% -10% +10% 
1 X  X  X  X  
2 X  X  X   X 
3 X  X   X X  
4 X  X   X  X 
5 X   X X  X  
6 X   X X   X 
7 X   X  X X  
8 X   X  X  X 
9  X X  X  X  
10  X X  X   X 
11  X X   X X  
12  X X   X  X 
13  X  X X  X  
14  X  X X   X 
15  X  X  X X  
16  X  X  X  X 

 
Using these uncertain models, the robust controllers were designed and the following cases were analyzed: impact 

response and robustness analysis. Only the results in the x plane are presented, since the same trends were observed 
along the z plane. The impact was applied in the disk #1 (node #13). 
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Figure 7. Impact Response and Frequency Response Function (FRF). 

 
The results shown in Fig. (7) demonstrate the effectiveness the proposed control strategy.  The amplitude attenuation 

is obtained for a time smaller than 0.05 sec. No attenuation was observed for the first overshoot: this occurs because the 
time response of the estimator has to be taken into account for the reconstruction of the modal states. The same trend 
was observed for node # 27 and for the z direction. The normalized FRFs are presented in Fig. (7). The first two modes 
in both directions were attenuated (almost 11.18 dB for the first frequency and 10.65dB for the second frequency). 
Besides, no spillover effects are observed for higher modes. The Figs. (8) and (9) present the electrical current required 
in the x plane and the generated electromagnetic force, respectively. 
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Figure 8. Electrical Current. 
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For analyzing the robustness of the control system, two situations of non-parametric variation are considered in the 

models. The first consists in applying a variation in the estimator model, and the second consists in analyzing the robust 
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controllers for the case in which the uncertain model is considered. The variation of the estimator model corresponds to 
uncertainties in terms of system identification. The considered variation appears in the dynamic matrix  A  for a 
variation in the range 0% to +20%. The natural frequencies of the estimator model are presented in Tab. (5). 

 
Table 5. Natural Frequency (Hz) - Estimator. 

 0% +20% 
Mode # 1 25.51 30.62 
Mode # 2 25.51 30.62 
Mode # 3 99.16 118.99 
Mode # 4 99.16 118.99 

 
First, the variation in the estimator is taken into account. The Fig. (10) presents the vibration attenuation for the first 

and third modes, which correspond the first two modes along the x plane. 
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Figure 10. Attenuation for mode #1 and #3. 

 
Figure (10) demonstrates that the controllers are robust with respect to a variation in the model of the estimator. A 

small variation in terms of attenuation was observed (≈0.03dB for the mode #1 and ≈0.1 dB for the mode #3). 
Finally, the robustness was analyzed in terms of uncertain models. The Figs. (11) and (12) present the results for the 

modes #1 and #3, respectively. The Matrix A corresponds to the model without uncertainties, and the matrices Ai (for 
i=1,2,…,16) are the uncertain models shown in Tab. (4). 
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Figure 12. Attenuation for mode #1. 

 
The consideration of uncertain models (see Figs. (11) and (12)) demonstrated the robustness of the controllers. The 

first mode presents a variation around 0.04dB, while the second mode presents a variation around 0.15dB. 
 

7. CONCLUSIONS 

 
In this work, a robust control strategy is applied to a rotor system supported by a hybrid bearing formed by a ball 

bearing and an electromagnetic actuator. The robust controllers were designed by using LQR solved by LMIs. The use 
of LMIs is an alternative to take into account uncertainties in the model of the system. These uncertainties were 
introduced considering a non-parametric variation; in this case, the new models (Ais) correspond to the uncertain 
models. 

For the impact response analysis, the results showed the efficiency of the robust control. This was observed both in 
the time and frequency domains. In the time domain, the amplitude attenuation was obtained for a time smaller than 0.1 
sec. In the frequency domain, the first two modes were attenuated (about 11.18 dB for the first frequency and 10.65dB 
for the second frequency). It is worth mentioning that no spillover effects were observed in the higher frequencies. 

The robustness of the controller was analyzed by considering a variation range from 0 to 20% in the dynamic 
matrix [A] of the estimator and the robustness was also analyzed for each uncertain model (Ais). The controllers were 
found to be robust for both cases analyzed. Only small variations were observed in the vibration reduction for each case 
considered, which demonstrates the effectiveness of the procedure. 

Next, the proposed approach will be implemented in a rotor testing machine (see Fig. (2)) in order to validate 
experimentally the techniques conveyed. 
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