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Abstract. In this work, the problem of transferring a space vehicle from a circular low Earth orbit (LEO) to a circular 

low Moon orbit (LMO) with minimum fuel consumption is presented. The optimization criterion is the total 

characteristic velocity. The optimization problem has been formulated using the classic planar circular restricted 

three-body problem (PCR3BP) and the planar bi-circular restricted four-body problem (PBR4BP). In both cases, the 

optimization problem has been solved using a gradient algorithm in conjunction with Newton-Raphson method. 

Numerical results are obtained for several final altitudes of a clockwise or counterclockwise circular low Moon orbit 

for a specified altitude of a counterclockwise circular low Earth orbit 
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1. INTRODUCTION  
 

In the last decades, new types of trajectories have been proposed to transfer a spacecraft from an orbit around Earth 
to an orbit around Moon, which reduce the cost of the traditional transfers based on the two-body dynamics (Chobotov, 
2005). The new trajectories are designed using more realistic models of the motion of the spacecraft such as the planar 
circular restricted three-body problem or the planar bi-circular restricted four-body problem (Belbruno, 2004; Koon et 
al, 2007). In these models, the motion of the spacecraft exhibits very complex dynamics that are used to design new 
Earth-to-Moon trajectories (Conley, 1968; Belbruno et al, 2010). New trajectories with large time of flight (about 80 to 
150 days) are calculated using the concept of weak stability boundary introduced by Belbruno (2004). These new 
trajectories are usually referred as low energy transfers (Conley, 1968; Koon et al, 2001; Belbruno, 2004). 

Low energy Earth-Moon transfers can be classified into exterior or interior, according to the geometry (Topputo, 
2013). In the exterior transfers the spacecraft is injected into an orbit with large apogee which crosses the Moon orbit. 
The apogee distance is approximately four times the Earth-Moon distance. This kind of trajectories exploits the Sun’s 
gravitational attraction (Yamakawa et al, 1992, 1993).  In the interior transfers most part of the trajectory occurs within 
the Moon orbit. Although the new approaches reduce the cost of the mission, only few works consider the problem of 
minimizing the total cost (Yagasaki, 2004a,b; Da Silva Fernandes and Marinho, 2012; Topputo, 2013). 

In this work, a preliminary analysis about the perturbation of the Sun on the problem of transferring a space vehicle 
from a circular low Earth orbit (LEO) to a circular low Moon orbit (LMO) with minimum fuel consumption is 
presented. It is assumed that the velocity changes are instantaneous, that is, the propulsion system is capable of 
delivering impulses. Trajectories with two impulses are considered in the analysis: a first accelerating velocity impulse 
tangential to the space vehicle velocity relative to Earth is applied at a circular low Earth orbit and a second braking 
velocity impulse tangential to the space vehicle velocity relative to Moon is applied at a circular low Moon orbit (Miele 
and Mancuso, 2001). The minimization of fuel consumption is equivalent to the minimization of the total characteristic 
velocity which is defined by the arithmetic sum of velocity changes (Marec, 1979). The optimization problem has been 
formulated using the classic planar circular restricted three-body problem (PCR3BP) and the planar bi-circular 
restricted four-body problem (PBR4BP). Numerical results are obtained for several final altitudes of a clockwise or 
counterclockwise circular low Moon orbit for a specified altitude of a counterclockwise circular low Earth orbit. Direct 
ascent trajectories, with time of flight of approximately 4.5 days, and multiple revolution trajectories, with time of flight 
of approximately 41.0 days, are considered in this study. The results for mission with multiple revolutions show that 
fuel can be saved if a lunar swing-by occurs. 
 
2. OPTIMIZATION PROBLEM BASED ON THE PCR3BP 
 

In this section, the optimization problem based on the PCR3BP is formulated. The following assumptions are 
employed: 

 
1. Earth and Moon move around the center of mass of the Earth-Moon system; 
2. The eccentricity of the Moon orbit around Earth is neglected; 
3. The flight of the space vehicle takes place in the Moon orbital plane; 
4. The space vehicle is subject to only the gravitational fields of Earth and Moon; 
5. The gravitational fields of Earth and Moon are central and obey the inverse square law; 
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6. The class of two impulse trajectories is considered. The impulses are applied tangentially to the space vehicle 
velocity relative to Earth (first impulse) and Moon (second impulse). 

 
Consider an inertial reference frame Gxy contained in the Moon orbital plane: its origin is the barycenter of Earth-

Moon system; the x-axis points towards the Moon position at the initial time 00 t  and the y-axis is perpendicular to 
the x-axis. In this reference frame, the motion of the space vehicle is described by the following set of differential 
equations: 
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where E  is the Earth gravitational parameter, M  is the Moon gravitational parameter, EPr  and MPr  are, respectively, 

the distances of the space vehicle from Earth (E) and Moon (M); that is,    222
EPEPEP yyxxr   and 

   222
MPMPMP yyxxr  . The position vectors of Earth and Moon are defined in the reference frame Gxy by the 

equations  
 

   t
D

tx MM 


cos
1

                                   t
D

ty MM 


sin
1

 ,     (2) 

 
   txtx ME                                                tyty ME  ,     (3) 

 

where     tDt MEM

3  , EM   and D is the distance from the Earth to the Moon. 
 

The initial conditions of the system of differential equations (1) correspond to the position and velocity vectors of 
the space vehicle after the application of the first impulse. The initial conditions  00 t  can be written as follows  
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where LEOv  is the velocity change at the first impulse,   EEP ahr  00  and  tEP  is the angle which the position 
vector EPr  forms with x-axis. 0h  is the altitude of LEO and Ea  is the Earth radius. It should be noted that  0

EP
r  and 

 0
EP

v  are orthogonal (impulse is applied tangentially to LEO). From Eqs (2) and (3), one finds 
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The final conditions of the system of differential equations (1) correspond to the position and velocity vectors of the 

space vehicle before the application of the second impulse. The final conditions  Tt f   can be put in the form (da 
Silva Fernandes and Marinho, 2012), 

 
            222

TrTyTyTxTx MPMPMP  ,     (6) 
 

         
 

2

22












 LMO

MP

M
MPMP v

Tr
TyTvTxTu


 ,     (7) 

 

ISSN 2176-5480

6570



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

                     
 

.











 LMO

MP

M
MPMPMPMPMP v

Tr
TrTxTuTyTyTyTvTxTx


   (8) 

 
where LMOv  is the velocity change at the second impulse,   fMMP haTr  , fh  is the altitude of LMO and Ma  is the 
Moon radius. The upper sign refers to clockwise arrival to LMO and the lower sign refers to counterclockwise arrival to 
LMO. From Eq. (2), one finds 
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The problem defined by Eqs (1) – (9) involves four unknowns LEOv , LMOv , T   and  0EP  that must be 

determined in order to satisfy the three final conditions. Since this problem has one degree of freedom, an optimization 
problem can be formulated as follows: Determine LEOv , LMOv , T   and  0EP  which satisfy the final constraints (6) 
– (8) and minimize the total characteristic velocity LMOLEOTotal vvv  . This problem has been solved by da Silva 
Fernandes and Marinho (2012) using an algorithm based on gradient method (Miele et al, 1969) in conjunction with 
Newton-Raphson method (Stoer and Bulirsch, 2002).  

 
3. OPTIMIZATION PROBLEM BASED ON THE PBR4BP 

 
In this section, the optimization problem based on the PBR4BP is formulated. The following assumptions are 

employed: 
 
1. Earth and Moon move in circular orbits around the center of mass of the Earth-Moon system; 
2. Earth-Moon system barycenter moves in circular orbit around the center of mass of the Sun-Earth-Moon 

system; 
3. The flight of the space vehicle takes place in the Moon orbital plane; 
4. The space vehicle is subject to the gravitational fields of Earth, Moon and Sun; 
5. The gravitational fields of Earth, Moon and Sun are central and obey the inverse square law; 
6. The class of two impulse trajectories is considered. The impulses are applied tangentially to the space vehicle 

velocity relative to Earth (first impulse) and Moon (second impulse). 
 
Consider a moving reference frame Gxy contained in the Moon orbital plane: its origin is the barycenter of Earth-

Moon system; the x-axis points towards the Moon position at the initial time 00 t  and the y-axis is perpendicular to 
the x-axis. In this reference frame, the motion of the space vehicle is described by the following set of differential 
equations: 
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where E , M ,  EPr  and MPr  are the same ones defined in the preceding section, S  is the Sun gravitational 

parameter, SPr  is the distance of the space vehicle from the Sun    222
SPSPSP yyxxr  . The distance from G to 

Earth, Moon and Sun are denoted by Er , Mr  and Sr , respectively. So, the position vectors of Earth, Moon and Sun are 
defined in the reference frame Gxy by the equations  
 

   trtx EEE cos     trty EEE sin ,    (11) 
 

   trtx MMM cos     trty MMM sin ,    (12) 
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   trtx SSS cos     trty MSS sin ,    (13) 
 

where     ttt MME   0 , and   trt
SSSS

3
0   , 00   is the initial phase of the Moon, 0S  is the initial 

phase of the Sun,    1DrE  and   1DrM . Note that Eq. (1) can be obtained directly from Eq. (10) by 
taking 0S . 
 

The initial conditions of the system of differential equations (10) correspond to the position and velocity vectors of 
the space vehicle after the application of the first impulse and are given by Eqs (4) and (5). The final conditions 
correspond to the position and velocity vectors of the space vehicle before the application of the second impulse and are 
given by Eqs (6) – (9). The problem defined by Eqs (6) – (9) and (10) involves five unknowns LEOv , LMOv , T , 

 0EP  and 0S
  that must be determined in order to satisfy the three final conditions. This problem has two degrees of 

freedom, so an optimization problem can be formulated as follows: Determine LEOv , LMOv , T ,  0EP  and 0S
  

which satisfy the final constraints (6) – (9) and minimize the total characteristic velocity LMOLEOTotal vvv  . This 
optimization problem has been solved using the same algorithm described in the preceding section. 

 
4. RESULTS 

 
In this section, results are presented for lunar missions using the optimization problems described above. The 

following data are used: 
 

2311 skm 10327.1 S                                                       235 skm 10986.3 E   
233 skm 10903.4 M                                                     km 10496.1 8Sr  

km 10678.4 3Er      km 10803.3 5Mr  

km  384400D  (distance from the Earth to the Moon),   
km  6378Ea (Earth radius)      km  1738Ma (Moon radius)  

km 671 0 h       km 300 ,200 ,100fh . 

 
Tables 1 and 2 show the major parameters for the lunar missions involving direct ascent trajectories with time of 

flight of approximately 4.5 days, considering clockwise or counterclockwise arrival at the Moon. Tables 3 and 4 show 
similar results for trajectories with time of flight of approximately 41.0 days. Figures 1 and 2 depict a maneuver with 
three revolutions for the two dynamical models, PCR3BP and PBR4BP, respectively, considering counterclockwise 
arrival at the Moon. 

 
 

Table 1 – Lunar missions, major parameters - 167LEOh  km 

 

 

Model 

 

Maneuver 

 

LMO altitude 

 km 

Totalv  

km/s 

LEOv  

km/s 

LMOv  

km/s 

T  
days 

 0EP  

degree 

 

 

 

PCR3BP 

 
Clockwise 

100     

200     

300     

 
Counterclockwise 

100     

200     

300     

 
 

 
From the results presented in Tables 1 and 2, and, Figures 1 and 2, the major comments are: 

 
1. Sun perturbation effects are too small for direct ascent trajectories.  
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2. The differences in LMOv  between the two models are of order of 2 m/s for direct ascent trajectories. 
3. The optimum initial position of the Sun is almost the same for direct ascent trajectories regardless the 

altitude of LMO. For the trajectories with clockwise arrival at the Moon, 0S
  is approximately 97 degree. 

For the trajectories with counterclockwise arrival at the Moon, 0S
  is approximately 95.4 degree. 

4. Sun perturbation effects are significant for trajectories with three revolutions. Fuel consumption can vary 
significantly according the initial position of the Sun.  

5. A swing-by maneuver with the Moon is made in the trajectories with three revolutions, for the both 
dynamical models. 

6. The velocity increment at the second impulse - LMOv  - is significantly affected by the presence of the Sun 
for trajectories with three revolutions. 

 
 
 

 
 

 
 

(a) Earth-Moon trajectory 
 

(b) LEO departure 

 

 

 
 

(c) Swing-by (d) LMO arrival 
 
 

Figure 1 – Trajectory with three revolutions – PCR3BP 
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Table 2 – Lunar missions, major parameters -  167LEOh  km 

 

 

Model 

 

Maneuver 

 

LMO altitude 

 km 

Totalv  

km/s 

LEOv  

km/s 

LMOv  

km/s 

T  
days 

 0EP  

degree 

 0S  

degree 

 

 

 

PBR4BP 

 
Clockwise 

100      

200      

300      

 

Counterclockwise 
100      

200      

300      

 
 

Table 3 – Lunar missions, major parameters -  167LEOh  km 

 

 

Model 

 

Maneuver 

 

LMO altitude 

 km 

Totalv  

km/s 

LEOv  

km/s 

LMOv  

km/s 

T  
days 

 0EP  

degree 

 

 

 

PCR3BP 

 

Clockwise 

 

 
 
 

100 
 

 
3.9036 

 
3.1315 

 
0.7720 

 
40.66 

 
348.64 

 

Counterclockwise 

 

 
3.9127 

 
3.1314 

 
0.7812 

 
40.70 

 
348.35 

 
 
 

Table 4 – Lunar missions, major parameters -  167LEOh  km 

 

 

Model 

 

Maneuver 

 

LMO altitude 

 km 

Totalv  

km/s 

LEOv  

km/s 

LMOv  

km/s 

T  
days 

 0EP  

degree 

 0S  

degree 

 

 

 

PBR4BP 

 
Clockwise 

 
 
 

100 
 
 

     

     

     

 

Counterclockwise 
     

     

     

 
 
5. CONCLUSION 
 

In this work, a preliminary study about the perturbation of the Sun on optimal trajectories for Earth-Moon flight of 
a space vehicle is presented. The optimization problem has been formulated using the classic planar circular restricted 
three-body problem (PCR3BP) and the planar bi-circular restricted four-body problem (PBR4BP). Results presented for 
some lunar missions with time of flight of approximately 4.5 days show that the presence of the Sun causes small 
perturbations in the main parameters defining the optimal solutions and some fuel can be saved if the duration of the 
transfer becomes larger (approximately 41.0 days). 
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(c) Earth-Moon trajectory 
 

(d) LEO departure 

 
 

(c) Swing-by (d) LMO arrival 
 

 
Figure 2 – Trajectory with three revolutions – PBR4BP –    00
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