
 

22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

Copyright © 2013 by ABCM 

 

CRACK IDENTIFICATION APPROACH FOR ROTATING MACHINES 
BASED ON COMBINATION RESONANCES 

 
Aldemir Ap Cavalini Jr 
Leonardo Sanches 
Edson Hideki Koroishi 
Valder Steffen Jr 
 
Laboratory of Mechanics and Structures (LMEst), National Institute of Mechanics and Structures (INCT – EIE), Federal University 
of Uberlândia, School of Mechanical Engineering, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408-196, Brazil, 
aacjunior@mecanica.ufu.br 
 
Abstract. In this paper a novel model based crack identification methodology is proposed. The technique uses external 
applied diagnostic forces at combination resonances frequencies, together with a pseudo-random optimization code 
known as Differential Evolution. The proposed procedure aims at characterizing the signatures of the crack in the 
spectral responses of a flexible rotor. The method of Multiple Scales is used to determine the conditions under which 
combination resonances appear. A finite element model of a rotor composed by a horizontal flexible shaft, two rigid 
discs, and two ball bearings is used to demonstrate the efficiency of the technique. In this system, the additional 
excitations are applied by electromagnetic actuators coupled to one of the bearings. The breathing crack is simulated 
according to the Mayes model, in which the crack transition from fully open to fully close is described by a cosine 
function. The additional flexibility introduced by the crack is calculated by using the linear fracture mechanics theory. 
This formulation is interesting since it gives the stiffness matrix of the element containing the crack explicitly in terms 
of its depth. Random noise is added to the dynamic responses of the rotating machine in order to simulate an 
experimental environment found in a real plant. Consequently, the robustness of the methodology is tested for adverse 
conditions. 
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1. INTRODUCTION 
 

Crack detection techniques based on vibration signals has been an area of intensive research activity in the last three 
decades as demonstrated by the existence of over 500 papers published on this subject between the 1980s and 1990s 
(Dimarogonas, 1996). According to Friswell and Penny (2002), most of the developed techniques for beams are based 
on changes in modal properties, such as natural frequencies, mode shapes, and measured dynamic flexibility. Periodic 
tests are performed in order to identify deviations from the data of the healthy system. These measures, generally 
associated with a reliable mathematical model, are then used to estimate the crack location and depth. Sinha et al. 
(2001), for example, estimated crack location and size in three different beams by minimizing the difference between 
the measured and predicted natural frequencies by using model updating approaches. However, despite presenting 
successful results, these techniques prove to be efficient only if the crack depth is severe enough to change significantly 
the modal properties of the structure, which usually does not happen when incipient cracks are considered. In Salawu 
(1997), an extended review of research works on crack detection based on changes of natural frequencies can be found.  

Concerning rotating machines, there are two widely accepted rules for crack detection in shafts. The first one is 
based on the monitoring of the synchronous vibration amplitude and phase. According to Bently and Hatch (2002), 
changes in 1X amplitude and phase are the best primary indicator of crack presence. The second rule relies on 2X 
vibrations, where the same authors state that if a cracked rotor has a steady unidirectional radial load, then a strong 2X 
response may appear when the rotor is turning at half of any balance resonance speed. Remember that a cracked shaft 
produces an anisotropic stiffness, which changes twice per revolution. Using a different approach, Baschschmid et al. 
(2001) applied a least-squares method based on the frequency domain to identify the location of a crack along a rotor 
shaft. The crack depth was determined by comparing the static bending moment of the shaft with an identified 
periodical bending moment, which simulates the crack. Sekhar (2003) proposed a method for on-line identification of 
cracks in rotors that changes the damage influence in the system by equivalent loads. Forces and moments were applied 
in the undamaged mathematical model by means of a least-squares method to generate a dynamic behavior identical to 
the measured one. Kulesza and Sawicki (2009) showed a new model based method where a state observer is designed 
and an auxiliary single-degree-of-freedom oscillator was used as crack indicator for different possible crack locations 
along the shaft. The proposed technique was validated numerically and the results proved its capability to detect and 
locate the crack. 

Following a different approach, Mani et al. (2006) proposed a crack detection technique that was numerically 
applied to a Jeffcott rotor supported by conventional bearings. In this case, the damage was found by applying a 
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specified diagnostic force on the system by using an electromagnetic actuator (EMA). The presence of the crack led to 
spectral responses with frequencies at combinations of the rotor speed, its critical speed, and the frequency of the 
diagnostic force. The multiple scale analysis (MSA) was used to determine the conditions required to create the 
combinational resonance. Kulesza et al. (2010) and Sawicki et al. (2011) presented successful experimental evaluations 
using the Mani's approach. The rotor used in their works is composed of a shaft supported by two active magnetic 
bearings (AMBs) and one disc located at the shaft mid-span. Different diagnostic forces, which were all determined by 
using MSA, were applied to the shaft by means of one of the AMBs. In the analyses, a small notch was cut by using a 
wire electric discharge machine close to the disc in order to obtain a behavior similar to the breathing crack mechanism. 
Despite the satisfactory results, the authors evocate further analytical and experimental investigations of the above 
diagnostic procedure in order to identify the signatures of the crack presence in the measured spectral responses. Penny 
and Friswell (2007), who have also investigated numerically the Mani's approach, shared the same point of view. 
Consequently, the authors suggest that further work is needed to draw a robust condition monitoring technique to 
determine the presence, location, and severity of a crack from the combination frequencies in the responses, which is 
the goal of the present contribution.  It is worth mentioning that an earlier study of the conveyed technique was 
performed for cracked beams (Cavalini Jr et al., 2013). 
 
2. CRACKED ROTOR MODEL 
 

Figure 1a presents a rotor segment, represented by a beam element, of length l containing a transverse crack of depth 
a located at a distance lA from the node A. The six-degree-of-freedom element is loaded with axial forces, P1 and P7, 
shear forces, P2, P3, P8, and P9, torsion moments, P4, and P10, and bending moments, P5, P6, P11, and P12. Details about 
the cross-section of the beam element of diameter D, at the location of the crack, are given in Figure 1b. The cross 
sectional area without crack is represented by the dashed surface. 
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     (b) 
 

Figure 1. (a) Cracked beam element. (b) Details about the crack element cross-section 
 

Using the Castigliano theorem, the cracked beam displacement ݑ௜ in the direction of the load ௜ܲ can be determined 
as shown by Eq. (1), as described by Darpe et al. (2004). 

௜ݑ ൌ
߲ܷ௢
߲ ௜ܲ

൅
߲ ௖ܷ

߲ ௜ܲ
																																																																																										ሺ1ሻ 

where ܷ௢ is the elastic strain energy of the no-cracked beam element and ௖ܷ is the additional strain energy due to the 
crack presence. The strain energy ܷ௢, that will generate the flexibility finite element matrix of the non-cracked beam, 
can be derived as described by Imbert (1991). 

The concepts of fracture mechanics show that the additional strain energy ௖ܷ is given by the integration of the strain 
energy density function over the crack area ܣ௖ (field not hatched in Figure 1b), as given by the Eq. (2). 
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where ܧᇱ ൌ ሺ1/ܧ െ ݉ ሻ andߥ ൌ 1 ൅  ூூூ௜ are theܭ ூூ௜, andܭ ,ூ௜ܭ is the Poisson's ratio, and ߥ ,is the Young's modulus ܧ ;ߥ
stress intensification factors corresponding to the opening, sliding, and shear modes of the crack displacement, 
respectively.  

The additional flexibility introduced in the beam element due to the crack presence is obtained with the definition of 
compliance, as given by Eq. (3): 
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௜௝ܥ ൌ
߲ଶ ௖ܷ

߲ ௜߲ܲ ௝ܲ
																																																																																									ሺ3ሻ 

where the resulting integrals were calculated by using the procedure described by Papadopoulos and Dimarogonas 
(1986) and Papadopoulos (2003). Therefore, the additional flexibility matrix due to the crack is: 
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Considering the crack located at ݈௔ ൌ ݈/2, the flexibility matrix of the cracked element ܥ௘௖ is given by: 

௘௖ܥ ൌ ௧ܤ௖ܥ௧்ܤ ൅  ሺ5ሻ																																																																																					௢ܥ

where ܤ௧ is obtained from the equilibrium conditions of the cracked element (Saavedra and Cuitiño, 2002), and ܥ௢ is 
the flexibility matrix of the no-cracked element (Imbert, 1991). 
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The finite element stiffness matrix of the cracked element is determined by considering its equilibrium conditions. 
Thus, after some algebraic manipulations, the cracked finite element stiffness matrix is found by using Eq. (7). 

௘௖ܭ ൌ  ሺ7ሻ																																																																																								௘௖ିଵ்ܰܥܰ

where ܰ is given by Eq. (8). 
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In this work, the Timoshenko finite element theory is used to model the cracked rotor. Two nodes with four degrees 
of freedom per node, associated with the shear forces P2, P3, P8, and P12 and the bending moments P5, P6, P11, and P12 
are considered. Also, the effects of the sliding and shear modes of the crack displacement are considered negligible 
ூூ௜ܭ) ൌ 0 and ܭூூூ௜ ൌ 0) as compared with the opening effects. Thus, the additional flexibility due to the crack is 
represented only by ܥହହ, ܥହ଺ and ܥ଺଺. Figure 2 shows the behavior of these flexibilities versus the dimensionless crack 
depth.  

The crack breathing law considered follows the model proposed by Mayes and Davies (1976), in which the opening 
and closing behavior of the crack is weight dominated. Thus, the stiffness of the cracked element changes smoothly 
according to the cosine of the instantaneous angular position ݐߗ of the rotating shaft (i.e., fully closed – fully open – 
fully closed crack transition), as shows the steering function ݂ሺݐߗሻ	defined in Eq. (9).  

݂ሺݐߗሻ ൌ
1
2
	ሺ1 ൅ cosሺݐߗሻሻ																																																																																ሺ9ሻ 
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Figure 2. Additional flexibility ܥହହ (──), ܥହ଺ (──) and ܥ଺଺ (──) versus the dimensionless crack depth 
 
where ߗ is the shaft rotation speed and ݐ is the simulation time vector. Penny and Friswell (2007) demonstrate that the 
Mayes’ model can generates, as observed in experimental tests, 1X, 2X, and 3X components in the rotor responses.  

Equation 10 presents the equation of motion that governs the dynamic behavior of the cracked flexible rotor 
supported by roller bearings. 

ሾܯሿݔሷ ൅ ሾܦ ൅ ሶݔሿீܦߗ ൅ ܭൣ ൅ ݔ௦௧൧ܭሶߗ ൌ ܹ ൅ ௨ܨ ൅ ௦ܨ ൅ ݂ሺݐߗሻሾΔܭሿݔ																																							ሺ10ሻ 

where ܯ is the mass matrix, ܦ is the damping matrix, ீܦ is the gyroscopic matrix, ܭ is the stiffness matrix, and ܭ௦௧ is 
the stiffness matrix resulting from the transient motion. All these matrices are related to the rotating parts of the system, 
such as couplings, discs, and shaft. ܹ stands for the weight of the rotating parts, ܨ௨ represents the unbalance forces, ܨ௦ 
is the vector of the shaft supporting forces produced by the roller bearings, and ݔ is the generalized displacement vector. 
Δܭ represents the maximum stiffness variation due to the crack. Thus, Δܭ ൌ ܭ െ  .௘௖ܭ

Due to the size of the matrices involved in the equation of motion, the pseudo-modal method is used to reduce the 
dimension of the finite element model (FE model). For this aim, the reduction is achieved by changing from the 
physical coordinates ݔ to modal coordinates ݍ, as shows the Eq. (11). 

ݔ ൌ ሺ11ሻ																																																																																																	ݍ߶                       

where ߶ is the modal matrix containing the n first vibration modes of the non-gyroscopic and non-damped system. 
Substituting the Eq. (11) into Eq. (10) and multiplying the resulting expression by ߶், the reduced equation of 

motion of the rotor becomes, 

ሷݍ෩൧ܯൣ ൅ ෩ܦൣ ൅ ሶݍ෩ீ൧ܦߗ ൅ ෩ܭൣ ൅ ݍ෩௦௧൧ܭሶߗ ൌ ෩ܹ ൅ ෨௨ܨ 	൅ ෨௦ܨ ൅ ݂ሺݐߗሻൣ∆ܭ෩൧ݍ																																						ሺ12ሻ 

where ܯ෩ ൌ ෩ܦ ,߶ܯ்߶ ൌ ෩ீܦ ,߶ܦ்߶ ൌ ෩ܭ ,߶ீܦ்߶ ൌ ෩௦௧ܭ ,߶ܭ்߶ ൌ ௦௧߶, ෩ܹܭ்߶ ൌ ෨௨ܨ ,்ܹ߶ ൌ ෨௦ܨ ,௨ܨ்߶ ൌ  ௦, andܨ்߶
෩ܭ∆ ൌ ߶்Δܭ߶. 

The solution of the Eq. (12) results in a response vector described in modal coordinates. By applying the Eq. (11) it 
is possible to convert the dynamic response to physical coordinates. 
 
3. CRACK IDENTIFICATION 
 

Figure 3 shows a flowchart to illustrate the proposed methodology. The method begins by defining a set of 
diagnostic forces ߗௗ௜௔௚ with different combinational frequencies. The frequency of each force is determined by using 
MSA. According to Mani et al. (2006), the conditions required for a combination resonance occurs when: 

ௗ௜௔௚ߗ ൌ ߗ݊| െ ߱௜|																																																																																ሺ13ሻ 

where ߗௗ௜௔௚ is the frequency of the diagnostic force that will induce the combination resonance, ݊ ൌ േ1,േ2,േ3, …, 
(i.e., is the frequency of the external force applied to the structure), and ߱௜ is a natural frequency of the system.  

The determined diagnostic forces are applied to the analyzed system and the corresponding spectral responses are 
stored (Original FFTs - Fast Fourier Transform). The same forces are applied to a reliable finite element model (FE 
model) of the structure so that the optimizer is responsible for adding the model of a crack with different depths and 
locations, randomly generated. The obtained spectral responses (FE model FFTs) are compared with the original ones 
by means of a given objective function ܱܨ, as shows the Eq. (14). If the procedure converges to a minimum value of 
the objective function, the crack is identified. If this is not the case, the optimization procedure will propose a new crack 
configuration (depth and location). The optimization process continues iteratively until convergence is reached. 
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Figure 3. Crack identification flowchart 
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																																																																			ሺ14ሻ 

where ݏ is the number of measured spectra, ܨܨ ௢ܶ௥௜௚ stands for the Original FFTs, and ܨܨ ௠ܶ௢ௗ௘௟ represents the FE 
model FFTs. The solution of the inverse problem is performed in this work by using the Differential Evolution 
algorithm (DE) due to its convergence speed and ability to find a global minimum solution even in the case of complex 
problems, as proposed by Storn and Price (1995). 
 
4. NUMERICAL APPLICATION 
 

Figure 4 presents the FE model in which 33 finite elements are used to represent the dynamic behavior of the rotor. 
It is composed of a flexible steel shaft with 860 mm length and 17 mm of diameter (205 = ܧ GPa, 7850 = ߩ kg/m3, ߭ = 
0.29), two rigid discs D1 (node #13) and D2 (node #23), both of steel and with 150 mm of diameter and 20 mm of 
thickness (7850 = ߩ kg/m3), and two roller bearings (B1 and B2, located at the nodes #4 and #31, respectively). Table 1 
summarizes the stiffness and damping parameters of the bearings. The rotating parts take into account a proportional 
damping (ܦ ൌ ܯߛ ൅  x 10-5. The effect of the coupling between the 4.85 = ߚ and 2.75 = ߛ with the coefficients (ܭߚ
electric motor and the shaft was considered by including angular stiffness of 770 N.m/rad around the orthogonal axis 
(horizontal and vertical directions) at the node #1. In all analyzes that will be shown, the operational spin speed of the 
rotor ߗ is fixed to 1200 rev/min. Figure 5 shows the Campbell diagram of the considered rotor (pristine condition), in 
which the four first damped natural frequencies at the operational spin speed (backward and forward whirls) are 28.2 
Hz, 28.6 Hz, 91.4 Hz, and 97.7 Hz.  

 

 
Figure 4. FE model of the rotor (---- Bearing; .... Disc; # node) 

 
Displacement sensors are orthogonally mounted (horizontal and vertical directions) on the nodes #8 and #28 to 

collect the shaft vibration (the first twelve vibration modes were used to generate the displacement responses). Equation 
(15) indicates how noise was added to the responses. 

௡௢௜௦௘ݔ ൌ ݔ ൅ ܲ	Randඥܧሺሺݔ െ  ሺ15ሻ																																																														ሻሻଶሻݔሺܧ

where ݔ is the response without noise, ݔ௡௢௜௦௘ is the response with noise, ܲ is the parameter that defines the amount of 
noise to be added (ܲ = 1% in the present case), and Rand is the random noise. ܧ is the expected value.  
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Table 1. Stiffness and damping parameters used in the FE model 
 

Bearings Direction Parameters 
B1 x 0.85 = ܭ x 106 N/m 

 Ns/m 7.45 = ܦ
z ܭ = 1.20 x 106 N/m

 Ns/m 33.7 = ܦ
B2 x ܭ = 5.20 x 107 N/m

ܦ = 25.58 Ns/m
z 7.02 = ܭ x 108 N/m 

 Ns/m 91.03 = ܦ
 
 

 
 

Figure 5. Campbell diagram of the simulated rotating machine (── 1X; ── 2X; ── 3X) 
 

The diagnostic forces are driven on the rotor by two identical EMAs located, along the horizontal direction, at the 
bearing B1 (the EMA produces only attractive forces). The EMA model used was constructed according to the approach 
adopted by Der Hagopian and Mahfoud (2009) and Mahfoud et al. (2010). Based on the magnetic circuit theory and 
assuming negligible eddy current effects and conservative flux, the relationship between the electromagnetic force and 
the electric current is given by: 

ாெ஺ܨ ൌ
௖ܰ௢௜௟ߤ௢ܽ	݂	ܫଶ

2 ቆሺ݁ േ ሻߜ ൅
ܾ ൅ ܿ ൅ ݀ െ 2ܽ௘

௥ߤ
ቇ
ଶ 																																																																ሺ16ሻ 

 
where ܨாெ஺ is the electromagnetic force, ௖ܰ௢௜௟ is the number of coils, ߤ௢ is the magnetic permeability in the vacuum 
 ௥ is the relative dimensionlessߤ is the gap distance, and ߜ ,is the drive current, ݁ is the air gap ܫ ,(݉/ܪ10ି଻ݔߨ4)
magnetic permeability; ܽ, ܾ, ܿ, ݀, and ݂ are the EMA geometric parameters. The properties of the actuators are 
summarized in Tab. 2. 

 
Table 2. EMA's properties 

 
EMA Properties 

ae = 10 mm 
b = 40 mm 
c = 30 mm 
d = 10 mm 
f = 21 mm 
Effective air gap = 0.5 mm 
Number of Coils = 180 
Relative dimensionless magnetic permeability = 750 
Maximum attraction force: 300 N for 3.0 A 

 
The crack identification methodology was tested for the rotor under three different structural conditions. The first 

one comprises the shaft without a crack (pristine condition), the second test was performed for the shaft with a crack 
located at the element #5 (between the nodes #5 and #6) with 30% depth, and the last one corresponds to a crack located 
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at the element #20, with 30% depth too. Simulations verified that the results were not sensitive to the length of the crack 
element of 45 mm. Cavalini Jr et al. (2013) previously demonstrated the ability of the methodology for the 
identification of incipient cracks in beams. 

For all the three crack damage conditions, a residual unbalance of 200 g.mm at 0o applied to each disc of the rotor 
was considered. Under this configuration, the maximum vibration amplitude measured by the sensors reaches 65 µm 
(peak-to-peak in the operational speed), which is considered as a balanced condition. According to Sinou (2008), the 
influence of the crack on the nonlinear dynamics of the rotating machine increases when the unbalance magnitude 
decreases. Also, it is worth mentioning that the unbalance forces must be small enough to allow the weight dominance 
for the crack breathing, considered by Mayes’ model (i.e. static deflection greater than the dynamic response of the 
rotor).  

The frequencies of the diagnostic forces were chosen in order to be distributed along the frequency bandwidth of the 
four first natural frequencies of the rotor. Thus, using only forward whirl critical speeds (i.e. in steady state motion 
unbalance forces do not excite the backward whirl), from ௙߱௪ଵ = 28.6 Hz, ߗௗ௜௔௚ ൌ 48.6, 8.6, 68.6, 11.4, 51.4, and 71.4 
Hz. They were obtained, respectively, for ݊ ൌ -1, 1, -2, 2, 4, and 5. Using ௙߱௪ଶ = 97.7 Hz, ߗௗ௜௔௚ ൌ 77.7, 57.7, 37.7, 
17.7, 22.3, and 42.3 Hz. They were obtained, respectively, for ݊ ൌ 1, 2, 3, 4, 6, and 7; giving a total of 12 diagnostic 
frequencies, resulting in 24 FFTs as only the two sensors along the horizontal direction were used (ߗௗ௜௔௚ near to the 
damped natural frequencies and the ones lower than 5 Hz were discarded.). All the diagnostic forces have the same 
amplitude. Tests were performed for different amplitudes and it was possible to observe that the amplitude has to be 
changed according to the level of noise. Thus, for the results that will be presented, a satisfactory amplitude value for 
the diagnostic forces was 25 N.  

Figure 6 shows the FFTs obtained using ߗௗ௜௔௚ ൌ 48.6 Hz for the shaft in its pristine condition, with a 15% depth 
crack located at the element #20, and a 30% depth crack located at the same element (change in the crack depth only). 
Note that the amplitudes of the peaks related with each rotor condition are different (i.e. the peaks associated with 
combination resonances: ߱௙௪ଵ െ ௙߱௪ଵ, ߱௙௪ଵ ,ߗ ൅  and so on). Figure 7 shows the FFTs obtained using the same ,ߗ2
diagnostic force, but for the shaft with a 30% depth crack at the element #5 and a 30% depth crack at the element #20 
(change in the crack position along the shaft only). Observe that the peaks associated with the combination resonances 
also present different amplitudes. For others ߗௗ௜௔௚, similar behavior is noted. As mentioned, the proposed methodology 
uses a set of diagnostic forces with different frequencies to identify cracks. It is possible due to the behavior evidenced 
by Figs. 6 and 7. The application of several diagnostic forces with different frequencies makes the spectral signature of 
the crack specific for its characteristic (location and depth), which allows the correct identification. The noise effects 
associated to the rotor responses were disregarded from these results. 

 

 
 (a)  (b) 

 
Figure 6. FFTs obtained using ߗௗ௜௔௚ ൌ 48.6 Hz for the shaft in three structural conditions 
(── pristine; …. 15% depth crack at element #20; …. 30% depth crack at element #20) 

 
Table 3 shows the results obtained by the crack identification process. The DE optimizer used 20 individuals in the 

initial population to identify the structural condition of the rotor. Five optimization processes were carried out for each 
analysis in order to avoid local minima solutions. The element with crack and the crack depth were used as design 
variables. Note that the damage configurations were satisfactorily identified. The small differences observed are due to 
the adverse conditions caused by the noise added to the dynamic responses of the rotor. 
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(a) (b) 

 
Figure 7. FFTs obtained using ߗௗ௜௔௚ ൌ 48.6 Hz for the shaft in two structural conditions 

(── 30% depth crack at element #5; …. 30% depth crack at element #20) 
 

Table 3. Results of the crack identification process 
 

Structure  
configuration 

Results 
Element Depth  

(%) 

No crack 31 0.08 

Element #5 
depth 30% 

5 31.88 

Element #20 
depth 30% 

20 29.99 

 
Figure 8 compares FFTs obtained from the original system with those found in the end of the identification process 

for the pristine rotor using the two sensors along the horizontal direction, nodes #8 and #28 (Fig. 8a-8f and Fig 8g-8l, 
respectively). The goal here was simply to check if the proposed methodology does not lead to false positive alarm. In 
these FFTs, one can observe only the peaks associated to the excitation frequencies and diagnostic forces, indicating the 
healthy state of the beam (no extra peaks are found in the spectra). Note that the identification process reproduced 
satisfactorily the FFTs obtained from the original system and is able to indicate correctly the no-crack condition (see 
Tab. 2). The remaining FFTs are similar to the previous ones. 

Comparing the Fig. 8 and Fig. 9 (nodes #8 and #28 in Fig. 9a-9f and Fig 9g-9l, respectively), one cannot observe 
different peaks in the spectra as result from the nonlinear effect introduced by the crack presence in the rotor, i.e., the 
change in the shaft’s stiffness (breathing behavior). In this case the rotor has a crack in the element #5 with 30% depth 
and the optimization process was able to identify satisfactory its location and depth. However, as there is no evidence of 
diagnostic peaks in the FFTs, the correct identification is addressed with other dynamic effects induced by the crack like 
changes in 1X vibrations. Note that the crack is located in a region of small strain, which makes the identification 
harder. 

Figure 10 (nodes #8 and #28 in Fig. 10a-10f and Fig 10g-10l, respectively) shows the results of the identification 
process when the rotor was affected by a crack located in the element #20 with 30% depth. Now, it is possible to 
observe the diagnostic peaks. Note that the peaks are found for different amplitudes, depending on the frequency of the 
diagnostic force. The diagnostic peaks show up due to the fact that a deeper crack changes more intensely the dynamic 
behavior of the beam under the application of the diagnostic forces, i.e., the nonlinear effect becomes more evident in 
the system responses. It is important to point out that all FFTs are necessary for the success of the crack identification 
procedure, even those where no extra peaks are found. 
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(a) sensor #8 / ߗௗ௜௔௚ ൌ 48.6 Hz (b) sensor #8 / ߗௗ௜௔௚ ൌ 8.6 Hz (c) sensor #8 / ߗௗ௜௔௚ ൌ 68.6 Hz 

 
(d) sensor #8 / ߗௗ௜௔௚ ൌ 11.4 Hz (e) sensor #8 / ߗௗ௜௔௚ ൌ 51.4 Hz (f) sensor #8 / ߗௗ௜௔௚ ൌ 71.4 Hz 

 
(g) sensor #28 / ߗௗ௜௔௚ ൌ 77.7 Hz (h) sensor #28 / ߗௗ௜௔௚ ൌ 57.7 Hz (i) sensor #28 / ߗௗ௜௔௚ ൌ 37.7 Hz 

 
(j) sensor #28 / ߗௗ௜௔௚ ൌ 17.7 Hz (k) sensor #28 / ߗௗ௜௔௚ ൌ 22.3 Hz (l) sensor #28 / ߗௗ௜௔௚ ൌ 42.3 Hz 

 
Figure 8. FFTs obtained in the crack identification process; no-crack (── Original system; .... FE model) 

 
5. CONCLUSIONS 

 
The presented results show that the developed inverse problem methodology is a reliable tool to estimate 

satisfactorily the existence, location, and depth of a crack. Noise was added to mimic experimental conditions. 
However, both a representative mathematical model of the mechanical system and the crack breathing mechanism are 
required (the diagnostic peaks observed in the FFTs depend on the breathing behavior).  

It is well known that the crack presence changes the dynamic behavior of the system only for higher frequencies. 
However, in the proposed methodology this is not a problem since the diagnostic forces generate the diagnostic peaks in 
the region of the lower vibration modes where the frequency bandwidth is associated with high vibration energy.  
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(a) sensor #8 / ߗௗ௜௔௚ ൌ 48.6 Hz (b) sensor #8 / ߗௗ௜௔௚ ൌ 8.6 Hz (c) sensor #8 / ߗௗ௜௔௚ ൌ 68.6 Hz 

 
(d) sensor #8 / ߗௗ௜௔௚ ൌ 11.4 Hz (e) sensor #8 / ߗௗ௜௔௚ ൌ 51.4 Hz (f) sensor #8 / ߗௗ௜௔௚ ൌ 71.4 Hz 

 
(g) sensor #28 / ߗௗ௜௔௚ ൌ 77.7 Hz (h) sensor #28 / ߗௗ௜௔௚ ൌ 57.7 Hz (i) sensor #28 / ߗௗ௜௔௚ ൌ 37.7 Hz 

 
(j) sensor #28 / ߗௗ௜௔௚ ൌ 17.7 Hz (k) sensor #28 / ߗௗ௜௔௚ ൌ 22.3 Hz (l) sensor #28 / ߗௗ௜௔௚ ൌ 42.3 Hz 

 
Figure 9. FFTs obtained in the crack identification process; element #5 with 30% depth  

(── Original system; .... FE model) 
 

It is necessary to apply several diagnostic forces to the system to identify the crack. Thus, a time-consuming 
procedure is expected for the future experimental testing that will be performed. However, in certain cases the 
diagnostic forces can be applied to the structure under operating conditions. The amplitude of the diagnostic forces can 
be adjusted to keep the system on a safe vibration level. Additionally, as the amplitude of the diagnostic forces can be 
adjusted so that difficulties that arise from a faster crack growth due to the effect of adding additional forces to the 
system can be minimized.  

The results presented demonstrate the efficiency and robustness of the methodology conveyed. This encourages 
further research efforts dedicated to experimental tests for validation purposes.  
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(a) sensor #8 / ߗௗ௜௔௚ ൌ 48.6 Hz (b) sensor #8 / ߗௗ௜௔௚ ൌ 8.6 Hz (c) sensor #8 / ߗௗ௜௔௚ ൌ 68.6 Hz 

 
(d) sensor #8 / ߗௗ௜௔௚ ൌ 11.4 Hz (e) sensor #8 / ߗௗ௜௔௚ ൌ 51.4 Hz (f) sensor #8 / ߗௗ௜௔௚ ൌ 71.4 Hz 

 
(g) sensor #28 / ߗௗ௜௔௚ ൌ 77.7 Hz (h) sensor #28 / ߗௗ௜௔௚ ൌ 57.7 Hz (i) sensor #28 / ߗௗ௜௔௚ ൌ 37.7 Hz 

 
(j) sensor #28 / ߗௗ௜௔௚ ൌ 17.7 Hz (k) sensor #28 / ߗௗ௜௔௚ ൌ 22.3 Hz (l) sensor #28 / ߗௗ௜௔௚ ൌ 42.3 Hz 

 
Figure 10. FFTs obtained in the crack identification process; element #20 with 30% depth 

(── Original system; .... FE model) 
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