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Abstract. This work investigates the aeroelastic stability boundary of flutter in aircraft composite panels, curved or 
flat, subject to the effect of stress stiffening caused by the piezoelectric actuator (PZT). Hamilton’s principle is used for 
the formulation of the energy functional and to obtain the equilibrium equations and boundary conditions of the 
problem. The finite element method is employed to numerically solve the equations. The aeroelastic behavior of panels 
manufactured in composite material (boron–epoxy) or conventional material (aluminum 2024-T3) are assessed. Two 
layers of piezoelectric material (ACX QP10N) are attached to the panels: one on the top surface one on the bottom 
surface of the panels. Prescribed voltages are statically applied to the piezoelectric actuators, inducing a prestress 
field which is responsible for the stress stiffening effects when coupled with the nonlinear strain components. Different 
geometric configuration, laminate stacking sequence, boundary conditions and curvatures are investigated. The study 
shows that mechanically strain-induced piezoelectric effect increases the rate of occurrence of flutter, stabilizing the 
plate. This stiffening of the structure is related to the voltage applied on the actuators and the geometrical parameters 
of the plate. Thus, one can control the occurrence of flutter speed by controlling the voltage applied and the proper 
design of the geometric properties of the panel and tailoring of the composite laminate. 
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1. INTRODUCTION  
 

The joint use of composite materials and piezoelectric materials in structures whose dynamic responses are 
important, especially in the aerospace business, is only natural. Composite laminates are thin because of their high 
stiffness/weight ratio. On the other hand, piezoelectric materials have small control authority and very good frequency 
response, what makes them ideal to be embedded or attached to structures undergoing appreciable dynamic movements. 
Moreover, the electromechanical coupling allows their use as both sensors and actuators. 

In the recent years, a considerable number of studies on the aeroelastic analysis and flutter suppression of various 
aeroelastic systems have been reported in the open literature. Shin et al. (2006) analyzed the aeroelastic characteristics 
of supersonic cylindrical composite panels. The flutter properties were studied considering structural damping effects 
with the finite element method. Friedmann et al. (2004) presented a fundamental study of the aeroelastic behavior of 
hypersonic vehicles. Prakash and Ganapathi (2006) studied the influence of thermal environment on the supersonic 
flutter behavior of flat panels using the finite element method. Fazelzadeh and Hosseini (2007) investigated the 
aerothermoelastic behavior of supersonic rotating thin-walled beams. Using geometrically non-linear finite elements 
based on a layerwise theory, Oh and Kim (2009) researched the vibration characteristics and supersonic flutter of 
cylindrical laminated panels subjected to thermal loads. 

Li et al. (2010) derived a state feedback suboptimal control law for the aeroelastic response and flutter suppression 
of a three-degree-of-freedom typical airfoil section based on the state-dependent Riccati equation method. Librescu et 
al. (2005) investigated the active aeroelastic control of 2D wing-flap systems to suppress the flutter instability and 
enhance the subcritical aeroelastic response to time-dependent external pulses. Librescu et al. (2005) further examined 
the dynamic aeroelastic response and the related robust control of aircraft swept wings exposed to gust and explosive 
type loads. Jegarkandi et al. (2009) researched the aeroelastic stability of a flexible supersonic flight vehicle using non-
linear dynamics, nonlinear aerodynamics, and a linear structural model. Kwon et al. (2004) examined the non-linear 
aeroelastic characteristics of a wing with an oscillating control surface in transonic and supersonic regimes and 
observed the effects of rotational stiffness on the flutter properties. 

Although there are many progresses in the aeroelastic analysis and flutter control of aircraft structures, in the above-
mentioned works, the piezoelectric material which possesses the self-adaptive and active control abilities has not been 
fully exploited. Up to now, the piezoelectric material has been extensively used for the active vibration suppression of 
engineering structures (Baz and Ro., 1996; Sun and Tong., 2004; Kumar and Singh, 2009) energy harvesting (De 
Marqui et al., 2009) and pre-buckling enhancement of composite plates (de Faria and Donadon., 2010; de Faria et al., 
2011).  
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The inverse piezoelectric effect is used in this work, i.e., strains are induced through the application of voltages to 
the piezoelectric patches. The strains piezoelectrically induced generate a stress field over the composite laminate that, 
depending on a number of parameters which will be addressed, stiffens the laminate. This effect is achieved with 
minimal mass overhead since very small piezoelectric patches are seen to significantly alter the laminate stiffness for 
relatively low voltage levels. The objective is to obtain the governing dynamic equations of laminated curved panels 
with piezoelectric actuators attached and subject to aerodynamic loads whose effects are accounted for using the piston 
theory, applicable to supersonic flows, and the virtual work of the nonconservative aerodynamic pressure over the 
panels. These governing equations are then solved in the frequency domain by the finite element technique. The finite 
element employed is the R16 (Bismarck, 1991) which has four nodes and four degrees of freedom per node. Instead of 
in-plane strains and displacements this element interpolates the Airy stress function which can be later eliminated from 
the system of matrix equations, resulting in a single FE equation in the nodal transverse displacements.  

 
2. PROBLEM FORMULATION 

 
The aeroelastic dynamic response of a composite cylindrical thin panel with piezoelectric patches perfectly bonded 

to its surfaces is investigated. Figure 1 depicts the configuration studied and the cylindrical coordinate system used in 
the analysis. The shell is considered to be thin with total thickness h and adequately modelled by Kirchhoff’s 
assumptions. A supersonic flow with airspeed U along x is imposed on the panel. This type of formulation has been 
extensively used in the literature for the analysis of beams (Hanagud et al., 1992), rings (Lalande et al., 1995) and 
general shells (Pletner and Abramovich, 1997) with piezoelectric elements. 

 
 

     

 
Figure 1.  Curved cylindrical panel in the presence of supersonic flow 

 
The electromechanical constitutive equations can be written as in Eq. (1), where it is assumed that the piezoelectric 

layers are polarized along the z direction (transverse direction perpendicular to the panel) 
 

T   σ Cε e E d eε ξE ,     (1) 

 
where C is the ply stiffness matrix, σ  is a vector of stresses, ε  is the strain vector, which includes linear and nonlinear 
components, d is the electric displacement, E is the electric field, e is the electromechanical coupling matrix, and  is 
the permittivity matrix. The cylindrical panel is modelled using classical thin-shell theory and von Kármán nonlinear 
strain  displacement relations. Accordingly, the in-plane displacements ( , , )u x y z  and ( , , )v x y z  are assumed to vary 

linearly through the thickness with respect to z and the transverse displacement ( , , )w x y z  is assumed independent of z. 

Thus the displacements are taken in the form 
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where the field variables are u, v, w represent the mid surface displacements. Based on these expressions, the total strain 
(), membrane strain (m) and curvature () vectors are given by 
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where R is the cylindrical panel radius. Admitting that the electric potential () varies linearly along the piezoelectric 
ply thickness and is constant in the plane 
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where zk is the position of the bottom surface of layer k in the thickness direction, hk is the thickness of layer k and k is 
electric potential on the bottom surface of layer k. Using Eq. (4), the electric field components Ex, Ey and Ez can be 
computed as 
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Given the strains in Eq. (3) and electric field in Eq. (5) the constitutive equation, Eq. (1), simplifies to 
 

33( )T
z z zE d E    σ Qε e e ε ,           (6) 

 

where Q  is the in-plane ply stiffness matrix in the structural coordinate system, dz is the electric displacement z 

component ,  = {xx  yy  xy}
T,  = {xx  yy  xy}

T, and e’ ={ e31  e31  0}T. Vector e’ is obtained through a 
transformation of the coordinate system when e31 = e32; a valid assumption for transversely isotropic piezoelectric 
material (Nye, 1972). Laminate matrices A, B, D and stress resultant piezoelectric vectors Np, Mp are defined as 
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where hp is the thickness of the piezoelectric layers assumed to be symmetrically placed on the top and bottom panel 
surfaces. Notice that the laminate matrices are affected by the stiffness of the piezoelectric layers. Accordingly, the 
integration limits (hp + h/2) must be adjusted to reflect presence or absence of piezoelectric layers in the laminate, i.e., 
when there no actuator layers, hp = 0. Moreover, Np, Mp are zero if no piezoelectric layers are present. The finite 
element method used to numerically solve the governing equations is based on energy principles. The kinetic energy of 
the system is 
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2 A

T hw dA                           (8) 

 
where   is density, h is the total thickness and A is the cylindrical panel mid surface domain. Again,  and h must be 
adjusted to account for presence or absence of piezoelectric layers. The strain energy of the electromechanical system is 
(Reddy, 1997): 
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where V is the volume of the panel. The membrane N = {Nxx  Nyy  Nxy}
T and moment M = {Mxx  Myy  Mxy}

T stress 
resultants are defined as N = Am + B and M = Bm + D leading, after integration through the thickness of Eq. (9) and 
use of Eq. (7), to 
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         The virtual work W of the aerodynamic loads corresponds to the work of the aerodynamic pressure distribution over 

the panel and is given by 
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where w is the transverse virtual displacement, M is the Mach number, q is the free stream dynamic pressure and  
 = 2q/(M2  1)1/2 (Bismarck, 1999). Equations (8), (10) and (11) can now be combined to write, according to 
Hamilton’s principle 
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The linearized static equilibrium equations are obtained from Eq. (12) making w/t = 0 and disregarding the nonlinear 
strain components in m from Eq. (3). The linearized membrane strains become L = { u0,x  v0,y + w0/R  u0,y + v0,x }

T 
where the subscript ‘0’ has been attached to denote prestress computations. Thus, Eq. (12) becomes, for the prestress 
problem 
 

2

1

0
0 0 0( ) ( ) 0

t
T T
L p p

t A

w
w dAdt

x
            ε N N κ M M    (13) 

 
Using divergence theorem one can obtain the prestress linearized static equilibrium differential equations 
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One can now investigate the dynamic movement of the cylindrical panel about the linearized static equilibrium 
configuration computed in Eq. (14). To this end the membrane (N) and moment (M) stress resultants in Eq. (12) are 
written respectively as N + N0 and M + M0 where now N and M represent small perturbations about the equilibrium 
state, just like the transverse displacement is w + w0, w being a small perturbation about equilibrium w0. Substituting the 
perturbed stress resultants into Eq. (12) and using the divergence theorem again the dynamic differential equations are 
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where Eqs. (14) have been used and nonlinear terms Nxxw,xx, Nyyw,yy, Nxyw,xy were neglected since N, M and w represent 
small perturbations. In Eq. (15) it is clear that (N0xx  Npxx), (N0xy  Npxy), (N0yy  Npyy) reflect the piezoelectric stresses, 
which coupled with w,xx, w,yy, w,xy produce the stress stiffening. In order to solve Eqs. (16), the Airy stress function F is 
defined as 
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2 2xx yy xy

F F F
N N N

x yy x

  
   

  
     (16) 

 
There are two types of bending-membrane coupling: material and geometrical. The first type happens when the 
laminate is nonsymmetric whereas the second is due to the panel natural curvature. When the material coupling is null 
B = 0 (symmetric laminate) and the membrane N = {Nxx  Nyy  Nxy}

T and moment M = {Mxx  Myy  Mxy}
T stress resultants 

become N = Am and M = D. Assuming a symmetric laminate and substituting Eq. (16) in (15c) the new dynamic 
equation in the transverse direction is 
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The problem is now formulated in terms of two variables: the transverse displacement w and the Airy stress function F. 
However, only one dynamic equation is available: Eq. (18). The missing dynamic equation comes from the imposition 
of the compatibility equations involving strains. Considering the linearized membrane strains L one can write the 
compatibility equation as 

, , , , /xx yy yy xx xy xy xxw R                 (18) 
 
Neglecting the quadratic terms in m inversion of N = AL results in L = A1N = A*N. which can be introduced into Eq. 
(18) to provide the missing dynamic equation 
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3. NUMERICAL SOLUTION 

 
Solution of the dynamic governing equations, Eqs. (17) and (19), is achieved using the finite element method where the 
Galerkin approach is used. Equation (17) is multiplied by w, an arbitrary but kinematically admissible displacement 
satisfying the homogeneous geometric boundary conditions applicable to w, and later integrated over A. Similarly, Eq. 
(19) is multiplied by F, an arbitrary variation satisfying the homogeneous geometric boundary conditions applicable to 
F, and later integrated over A. The weak form of the variational equation is thereby obtained and discretized using the 
R16 (Bismarck, 1991) element which has 8 degrees of freedom per node: w, w,x, w,y, w,xy, F, F,x, F,y and F,xy. Within 
each element both w and F are interpolated with the C1 Hermitian polynomials (w = Liwi and F = LiFi) which leads to 
the following matrix equations, 

0
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where w and f are the global vectors of degrees of freedom associated with displacement and stress function. The 
detailed computation of the matrices involved in Eq. (20) can be found in (Bismarck, 1999). The degrees of freedom 
relative to F can be easily eliminated since f = (KFF )1 KFw w what gives 
 

1
0 0 0[ ( ) ( ) ( ) ]ww wF FF Fw xx pxx Gxx xy pxy Gxy yy pyy GyyN N N N N N         Mw K K K K A K K K w 0    (21) 

 
Assuming that vector w is of the form w = w0 exp(jt), where  is the vibration frequency of the structure, w0 is the 
amplitude vector and j = 1, Eq. (21) becomes 
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2 1
0 0 0 0[ ( ) ( ) ( ) ]ww wF FF Fw xx pxx Gxx xy pxy Gxy yy pyy GyyN N N N N N           M K K K K A K K K w 0    (22) 

Equation (22) defines the eigenvalue problem that governs the solution of the aeroelastic instability of cylindrical panels 
subject to piezoelectric actuation. In Eq. (24) M is the mass matrix, Kww  KwF (KFF )1 KFw is the stiffness matrix, A is 
the aerodynamic matrix, and KGxx, KGxy, KGyy are the geometric stiffness matrices induced by piezoelectric effect. It can 
be noticed that, when the piezoelectric load N0  Np and the freestream dynamic pressure are zero ( = 0),  represents 
the natural frequency of the panel. On the other hand, as  increases, the values of  change until, when  reaches a 
critical value, the frequencies of two vibration modes coalesce. Further increases in  lead to the appearance of complex 
conjugate frequencies for those modes that coalesced, characterizing unstable movement of the structure since the 
amplitude of the harmonic movement of the panel would increase without bounds. Physically, this condition means that 
oscillation will increase until failure or collapse of the structure. This critical value of  represents the aeroelastic 
stability frontier of the panel. Mathematically, when modes coalesce the panel dynamics is described by 
 

0 exp[( ) ]R Ij t  w w               (23) 

 
where the real part of the complex frequency is responsible for the increase of the amplitude until structural collapse. 

 
4. NUMERICAL RESULTS 

 
The finite element model formulated was validated with known results on the aeroelastic frontier of composite panels. 
A boron-epoxy plate with 8 layers [0/90]2s was analyzed. The plate dimensions are 400  400 in and 8 in thickness. 
Mechanical properties are E1 = 31106 psi, E2 = 2.7106 psi, G12 = 0.75106 psi, 12 = 0.28 and  = 0.192103 lb.s2/in4. 
Table 1 shows that the model developed delivers results which are comparable to those found in the literature. 

 
Table 1  Values of cr

* = cr a
3/(E2h

3) and cr
* = cr (a

2/h)(/E2)
1/2 for a fully clamped orthotropic boron-epoxy square 

plate 

 
Figure 2 shows the effect of applying voltages to the piezoelectric actuators on the mode coalescence of a simply 
supported 2024-T3 aluminum flat panel with a = b = 0.4 m and a/h = 100. 
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Figure. 2. Coalescence of the principal vibration modes when piezoelectric voltages are applied 

Source  cr
*
 cr

*
  

Triangular element (8 8 mesh) (Lee and Cho, 1990)  471.00 46. 89  

Rectangular element (6 6 mesh) (Pidaparti and  Yang, 1993) 472.00 46. 80  

Series    474.60 47. 19  

Method of integral equations (Srinivasan and Babu, 1987)  446.36 46. 09  

Rectangular element 16 DOF (4 4 mesh) (Bismarck, 1999) 452.54 46. 09  

Rectangular element 16 DOF (8 8 mesh) (present work)  479.60 47. 07  
  

(Srinivasan and Babu, 1987) 

ISSN 2176-5480

142



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

As seen in Fig. 2, application of voltages stabilizes the flat panel since the critical aerodynamic pressure increases. 
When  = 50 V cr increases 7% with respect to the  = 0 V situation. Similarly, when  = 100 V cr increases 14%, 
when  = 150 V cr increases 21.2% and when  = 200 V cr increases 28.4%. Figures 3 and 4 show how cr

* varies for 
a single layer boron-epoxy laminated flat panel when the lamination angle changes. It is noticed that the square panel 
either simply supported or clamped, provides the highest aeroelastic stiffness. cr

* is reduced as the lamination angle  
increases from 0o up to 90o. The clamped square flat panel has a greater aeroelastic stiffness for all values of  in 
comparison to the simply supported panel. The panel with r = 2, in both boundary conditions, has maximum cr* when  
= 30o. For 30o <   90o cr* decreases until its minimum value. As of  = 65o the simply supported laminate is stiffer 
than the clamped laminate. 
 
In order to provide some metrics and evaluate the efficiency and cost of the inverse piezoelectric effects for all analysed 

cases, an inverse piezoelectric effectiveness parameter  *  has been introduced.  *  has been defined as a ratio between 
the relative increase in the critical dynamic parameter in respect to the normalized energy provided by the piezoelectric 

actuator, that is,  * =  cr /U  0
cr  with      0i

cr cr cr  and       
22 2

max max/2 / /2 /U CV CV V V . C  is the 

electrical capacitance of the piezoelectric actuator,  V  and maxV  are the applied voltage and maximum voltage of the 

piezoceramic patch.  i
cr  and 0

cr  are the critical pressure parameters associated with i  (i=1 for 100 V and i=2 for 200 

V)  and   0 V , respectively. The piezo actuation system whose properties were used in this work is limited to 

max 200 VV by hardware.  

 
Figures 5 and 6 depict the influence of lamination angle on the inverse piezoelectric effectiveness parameter for both 
boron-epoxy laminate simply supported and clamped cylindrical panels, respectively. The inverse piezoelectric 
effectiveness significantly increases as the lamination angle approaches   = 90o for both simply supported and clamped 
cylindrical panels. On the other hand, the inverse piezoelectric effectiveness is significantly reduced when  approaches 
0o. Additional parametric studies including the effects of the shell curvature on flutter behavior of composite shells are 
provided in (de Almeida et al., 2012). 
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Figure 3. Influence of lamination angle on boron-epoxy laminated simply supported cylindrical panels with 
piezoelectric actuators charged 
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Figure 4. Influence of lamination angle on boron-epoxy laminated clamped cylindrical panels with piezoelectric 
actuators charged 
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Figure 5.  Influence of lamination angle on the inverse piezoelectric effectiveness parameter for boron-epoxy laminate 

simply supported cylindrical panels  
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Figure 6. Influence of lamination angle on the inverse piezoelectric effectiveness parameter for boron-epoxy laminate 

clamped cylindrical panels 

 

5.  CONCLUSIONS 
 

A significant increase of the aeroelastic stiffness in flutter may be achieved by means of piezoelectric actuators bonded 
to the vibrating structure such as an aeronautical composite panel. This device allows one to control the velocity and the 
frequency where flutter occurs. Although large patches of piezoelectric actuators cannot be found in the market, which 
could fully cover a aeronautical panel, large piezoelectric patches were considered for investigatory reasons, aiming at 
the understanding of the influence of geometric parameters (aspect ratio, curvature, lamination angles, thicknesses and 
boundary conditions) on the critical aerodynamic pressure. It was shown that a positive electrical charge stiffens the 
panel, increasing cr.  On the other hand, negative charges impair the panel stiffness, bringing down cr and making the 
panel more vulnerable to flutter, i.e., it will become unstable at lower values of . This study proved that it is possible to 
control the airspeed where flutter occurs in aeronautical panels using piezoelectric actuators. The assessment conducted 
pointed to a large array of parameter combinations that may yield the best conditions for flutter aeroelastic instability 
control in aeronautical panels. 
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