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Abstract. In this article a new solution based on boundary element technique for classical laminated beam theory is 
established. Discussions on mathematical steps to write down both integral equations and fundamental solutions for 
laminated beam problem are properly made. Only in-plane bending is taken into account and numerical results for 
typical cases of rectangular cross-section beam are presented as well.  
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1. INTRODUCTION 

 

Composite laminates are generally engineered materials made by assembling of oriented layers and they are usually 
manufactured to maximize strength/weight ratio, especially in engineering applications. Laminated beams have been 
mathematically represented by beam theories associated with Equivalent Single-Layer (ESL) models and Discrete-
Layer(DL) approaches Reddy (1997).  The Classical Laminated Beam Theory (CLBT) is the simplest model of ESL 
family and it can seen as an adaptation of the hypotheses of Euler-Bernoulli beam theory to laminated composite 
materials. 

Structural analysis of beams based on CLBT has been developed using analytical and numerical solutions. For the 
first case, closed solutions have been appeared for special cases, for instance Khdeir and Reddy (1997), 
Chandrashekhara and Krishnamurthy (1990), Kargarnovin et al. (2013), Han et al. Lu (2010). When laminated beam 
problems is solved by numerical solutions, they are generally done by Finite Element Modeling (FEM), see for 
instance, the review article by Hajianmaleki and Qatu (2013). 

For many engineering problems as Boundary Element Method (BEM) is an alternative numerical technique to FEM, 
but this has not been verified for laminated beam problems. In fact, BEM solutions have been applied only to static and 
dynamic analysis of beams and frames made of homogenous materials, for instance, Banerjee (1981), Antes (2003), 
Beskos and Providakis (1986), Cruz (2012), Antes et al. (2004). 

In this paper a direct BEM formulation is established for classical laminated beam theory, so that integral equations, 
fundamental solutions, and algebraic system are properly derived. Only in-plane bending problem is taken into account 
and the BEM results are compared to other solutions available in literature. 
 

2.REAL AND FUNDAMENTAL PROBLEMS 

 

The classical laminated beam theory is based on the following hypotheses:  planar shape conversation of the cross 
section is assumed from the undeformed state until the deformed configuration; The normals to cross section rotate such 
that they keep their orthogonalities after the deformation; displacement, rotation, and strain are assumed to be smooth 
(small) fields. Then, axial and transverse displacement of the beam can be written as follows  

 

 
 

  
 
Where u, w are axial and transverse displacements, respectively.  z is the depth of point with respect to neutral line. 
 
In addition, axial strain is given by 
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Axial stress is associated with axial strain by a constitutive relation given by
   

 
 

 
 
Where  is the transformed stiffness in x-direction, which can related to plane stress reduced stiffnesses ijQ  in 

the principal axes ( 1x , 2x ) as follows 
 

  
 
With  

)/( 2
2
121

2
111 EEEQ  ,  

)/( 2
2
1212122 EEEEQ  ,  

221212 QQ  ,  

1266 GQ                                                                                                                                                                   

 
where  iE  are Young moduli for 1x - and 2x directions as well as 12G  is shear modulus and 12 is  Poisson’s ratio. 

  is the angle between x and 1x , see Figure 1. 

 
Figure1. Laminate fiber orientation.(Reddy, 1997) 

 
Force and moment resultants can be obtained from constitutive relation Eq. (4) and Eq. (3), yielding to: 
 

 
 

 
 

 
 
Where 11A , 11B  and 11D  are the rigidity moduli given by: 

 
 

 
Applying the equilibrium conditions for forces and moments shown in Figure 2, following relations can be written  
 

0 xp
dx
dN

,  
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0 zp
dx
dQ

, 

0Q
dx

dM

                                                                
 

 
Figure 2- Forces and moments of the beam 

 
 Substituting Eq. (7) into Eq. (9), the governing equations in terms of displacements can be finally written 
 

 
 

 
 
The fundamental problem of the classical composite laminated beam is associated with an infinite domain member 

under point loads ( , ) and governed by same relations applied to real problem. Hence, fundamental governing 
equations are analogous to Eq. (10), resulting in: 

 
    fGB                                                                                                                                                               (11)  
 
where 
 

,  , 

 

. 

 
Where ( , ) are the displacement fundamental solutions when only )ˆ,()ˆ,(* xxxxpx    is applied. ( , ) are 

solution counterparts for )ˆ,()ˆ,(* xxxxpz   activation only.  
 
The solution of Eq. (11) can be found using Hormander(1963)’ method, which is a decoupling technique where the 

solution is written in terms of a scalar parameter , yielding to  
 

  
  
If Eq. (12) is substituted into Eq. (11), gives 

)ˆ,()ˆ,(]det[ xxxxB                                                                                                                                           (13) 

After algebraic manipulation, Eq. (12) can be written as follows 
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The solution here proposed for the Eq. (14)  is: 
 

 
 
Where . 
 
When Eq. (15) is substituted into Eq. (12), yields to explicit form of displacement fundamental solutions: 
 

 
 

 
 

 
 

 
 
where   is the sign function. 

 
Force fundamental solutions can be obtained substituting Eq. (16) into fundamental counterparts of the Eq. (7), 

resulting: 
 

 
 

 
 

 
 

 
 

 
 

 
 
3. INTEGRAL AND ALGEBRAIC EQUATIONS 

 

If Eq. (10) is weighted by fundamental solution Eq. (9), the method of weighted residuals states: 

 
 
After applying conveniently successive integrations by parts of Eq. (18) and then with help of Eq. (7), Eq. (11) and 

the property of the Dirac delta, one obtains the integral equations for both  axial and transverse displacements: 
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The classical laminated beam problems require three unknowns at boundary to be determined. Hence, an additional 

equation is necessary to be established in order to get the problem solvable. Then, this remaining equation can be 
associated with the derivative of Eq. (19b) at source point xdxdw ˆ/)ˆ( , yielding to slope integral equation: 

 

 

 
 
 
By collocating the source at the edges of the bar, ie for )0(limˆ 0   x  and )(limˆ 0    Lx , an algebraic 

representation in terms of boundary quantities for displacements (see Fig.3b) and for forces (see Fig.3a) can be written 
as follows 

 
   

 
Where ][],[ GH and f are the influence matrices and load vector.  u  and  p are the displacement and force vectors, 
which their explicit forms are (see Figure 3): 

  

  

 

 
 

Figure 3. Boundary forces (a) and displacements (b). 
 
The explicit forms of the influence matrices in Eq. (20) are: 
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If both loads px and pz are uniform along beam domain, the load vector {f} becomes: 

 
 
After determination of the boundary unknowns, axial displacement )ˆ(xu , transverse displacement )ˆ(xw , and slope 

xdxdw ˆ/)ˆ(  at any point of the beam domain can be evaluated using Eq. (19). 
 
4.NUMERICAL RESULTS 

 
 A rectangular cross section beam having 1 m length, 0.025 m width, and 0.05 m height was considered here. In 

addition, the beam has mechanical properties (E1 = 180 GPa, E2 = 8.96 GPa; G12= 7.1 GPa; ν12 =0.3) and it is subjected 
to a uniform load  250 kN/m and under two sets of the boundary conditions (simply supported or clamped beam). The 
maximum deflections of the beam are analysed for cross-ply and angle-ply laminates. The results for simply supported 
beam are shown in Table 1 while clamped beam responses are shown in Table 2.  The BEM responses are compared to  
the Euler Approach results given by Hajianmaleki and Qatu (2011). 

.  
Table 1. Maximum deflection of the simply supported bam. 

  
 )(max mw  

Laminate Euler Approach BEM 
(0)4 0.0901 0.0901 

(0/90)s 0.1019 0.1020 
(45)4 0.2753 0.2753 
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Table 2. Maximum deflection of the clamped beam. 
 

 )(max mw  
Laminate Euler Approach BEM 

(0)4 0.01801 0.01801 
(0/90)s 0.02039 0.02039 
(45)4 0.05506 0.05506 

     

 
 
5. CONCLUSIONS 

 

In this paper a boundary element modelling was established to composite laminated beam problems under 
hypotheses of the classical laminated beam theory. Only in-plane bending is considered and the results suggest the 
correctness and effectiveness of the formulation here presented. 
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