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Abstract. In the present work two different arrangements of vascular channels are studied numerically and their 
geometry is optimized by means of Constructal Design. The main purpose is to seek for the best geometry which 
minimizes the resin flow resistance inside the channels. The arrangement of vascular channels consists in two 
horizontal channels of diameter D2 connected with two vertical channels of diameter D1. The channels of resin flow are 
distributed in a solid domain with two different ratios of height and length (H/L = 0.67 and 1.5) in order to illustrate 
the process of regeneration of composite materials. For all of evaluated configurations the ratio between the areas 
occupied by the channels and by the solid domain are kept fixed (ϕ = 0.1). It is considered a two-dimensional, laminar 
and steady state flow (ReD2 = 1.0). The conservation equations of mass and momentum are solved numerically by 
means of the finite volume method (FVM). The results showed that the optimal geometric configuration has a flow 
resistance several times lower than that found with the worst geometry. For example, for H/L = 0.67, the ratio (D1/D2)o 
= 0.76 conduct to a fluid dynamic performance nearly 32 times superior than that found for D1/D2 = 0.1. It is also 
noticed that the best shapes are achieved when the pressure and velocity fields has the most homogeneous distribution, 
i.e., according to the constructal principle of “optimal distribution of imperfections”. 
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1. INTRODUCTION 
 

The study of multifunctional materials is a research field that has deserved much attention, especially into the self-
healing framework. The composites are generated by the macroscopic combination of two or more materials, which 
have a recognizable interface among them. The self-healing materials are those that have the ability to reestablish their 
functional structure in an autonomous form when submitted to some damage, avoiding future collapses (White et al., 
2001). According to the same authors, these materials mimic the effect of biologic systems which self-regenerates their 
structure “immediately” after suffering some damage, i.e., bio-inspired systems. 

The self-healing mechanism used by vegetal and animal systems is based on the secretion of several fluids in the 
damaged placement, filling it with the fluid and promoting its regeneration (White et al., 2001; Terriault et al., 2003). 
One example can be seen in human structure, where the healing of a broken bone is performed by the transport of 
biological fluids with coagulants and nutrients to the affected region, allowing the generation of cartilaginous fibers 
which are calcified. This process generates a new bone with an undistinguishable tissue in comparison with the original 
one. Into the engineering realm, this kind of material is important for several applications, such as: aeronautical 
industry, medicine, orthopedic prostheses and railway, naval and automobile buildings (White et al., 2001; Terriault et 
al., 2003). 

One form to self-recovery of damaged material consists on the insertion of microcapsules in a fluid which flows 
inside channels intruded into the structure to be repaired. One of limitations of this method is the lack of control over 
the amount of healing agent consumed in the local damaged. In this sense, several empties can be generated inside the 
material structure due to the propagation of cracks along the solid domain which are not repaired by the healing fluid 
(Terriault et al., 2003). One possibility to minimize these limitations is the transport of microcapsules in vascular 
channels. In this sense, the search for the best geometry of these channels (diameters and arrangement, for example) 
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inside the structure domain is also an important subject and has been studied with the furtherance of Constructal Theory 
(White et al., 2001; Therriault et al., 2003; Wang et al., 2006; Lee et al., 2008). 

Constructal Theory is based on Constructal law, which is a physical principle that can be intended as a 
generalization of the tendency of all things to flow along paths of minimal resistance. Nature and engineering are united 
in the search for optimized flow architecture. This law has been employed for several applications in all the domains of 
design generation and evolution, from biology and physics to social organization, technology evolution, sustainability 
and engineering (Bejan, 2000; Bejan and Lorente, 2008; Bejan and Zane, 2012; Rocha et al., 2013).  

In the present numerical study Constructal law is used to evaluate the geometrical configuration of two different 
arrangements of vascular channels, which mimics the transport of self-healing fluid over one solid domain that requires 
to be regenerated. The main purpose is to seek for the best geometry which minimizes the resin flow resistance inside 
the channels, i.e., the geometry that will led to the best distribution of self-healing fluid over the structure of solid 
domain. The arrangement of vascular channels consists in two horizontal channels of diameter D2 connected with two 
vertical channels of diameter D1. The channels of resin flow are distributed in a solid domain with two different ratios 
of height and length (H/L = 0.67 and 1.5). These configurations are similar to those studied analytically by Kim et al. 
(2007). For all of evaluated configurations the ratio between the areas occupied by the channels and by the solid domain 
are kept fixed (ϕ = 0.1). It is considered a two-dimensional, laminar and steady state flow (ReD2 = 1.0). The 
conservation equations of mass and momentum are solved numerically by means of the finite volume method (FVM) 
(Patankar, 1980; Versteeg and Malalasekera, 1995; Maliska, 2004). More precisely, it is employed the commercial 
software FLUENT (Fluent, 2007). The numerical method is evaluated by means of comparison with analytical results 
of archival literature. 
 
2. MATHEMATICAL AND NUMERICAL MODELING 
 

In the present work, it is solved numerically several two-dimensional (2D) geometries for ducts arrangements 
similar to that presented in Fig. 1. The vascular channels where the resin flows are represented in Fig. 1 by the dashed 
area. For all cases, the resin flow is driven by an imposed velocity at the inlet of the channel arrangement in such way 
that the Reynolds number be equal to unity (ReD2 = ρVD2/µ = 1.0). The channel surfaces has the non-slip and 
impermeability condition (u = v = 0 m/s) and the channel outflow has an atmospheric prescribed pressure. 

Concerning the geometrical arrangement, two orthogonal configurations are studied: H/L = 0.67 (whose domain is 
formed by M = 3 and N = 2 elementary squares of side d in x and y directions, respectively) and H/L = 1.5 (which is 
formed by M = 2 and N = 3 elementary squares of side d in x and y directions, as illustrated in Fig. 1). In this study, the 
volume occupied by the channels is kept fixed and several ratios between the diameters of horizontal and vertical 
channels (D1/D2) are investigated. It is worthy to mention that, only the flows inside the channels are investigated here. 

 

 
Figure 1. Channels arrangement for the configuration H/L = 1.5 (M = 2 × N = 3). 

  
The main purpose here is to evaluate which ratio of D1/D2 minimizes the flow resistance for two configurations of 

solid domain evaluated (H/L = 0.67 and 1.5). The flow resistance is given by (Kim et al., 2007): 
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where ∆P is the pressure difference between the inlet flow and outlet flow (Pa) and m&  represents the mass flow rate of 
resin inside the channel (kg/s). 

As above mentioned, the ratio between the area occupied by the channels (dashed area of Fig. 1, Ad) and the total 
area of elementar squares (solid domain of area H × L in Fig. 1, At) is given by: 
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A=φ                                                                                                                                                                 (2) 

 
In this work the area fraction is kept constant (ϕ = 0.1). Concerning the fluid flow, it is considered a resin flow with 

the following thermo-physical properties: ρ = 1150 kg/m³ and µ = 1.4 kg/(m⋅s). The inlet velocity is imposed in order to 
reach to a Reynolds number equal to unity (ReD2 = ρVD2/µ = 1.0). Other important observation is concerned with the 
total area, which is considered H × L = 1 m². In this sense, the elementary dimension d = (1/6)1/2 m. 

For all simulated cases the flow is considered laminar, incompressible and for a two-dimensional domain. Then, it is 
required the numerical solution of the conservation equations of mass and momentum in x and y directions, which are 
given respectively by (Schilichting, 1968): 
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where υ represents the kinematic viscosity (m²/s), u is the velocity in the x direction (m/s), v is the velocity in the y 
direction (m/s) and X and Y represents the buoyancy forces in x and y directions (N/m³), respectively. The latter terms 
are neglected in the present simulations. 

The computational domain is discretized in several finite rectangular volumes using the commercial software 
GAMBIT and the conservation equations, Eq. (3) – (5), are solved with the software FLUENT, which is based on 
the Finite Volume Method (FVM) (Patankar, 1980; Versteeg and Malalasekera, 1996; Maliska, 2004). The solver is 
pressure based (coupled of 1st order for pressure and upwind of 2nd order for momentum). Concerning the convergence, 
the solution is considered converged when the maximal residual of 10-6 was achieved for the mass and momentum 
equations. Moreover, double precision was used for all numerical simulations. 

The grid independence is evaluated for the channel geometry with H/L = 0.67 and D1/D2 = 0.1 and the appropriate 
mesh size dimension was determined by successive refinements until the criterion ε, as shown in Tab. 1. The criterion 
of grid independence is given by: 
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where ∆Pi+1 represents the pressure difference between the inlet and outlet of the vascular channel using the current grid 
and ∆Pi represents the pressure difference for the previous (coarser) grid. 

As depicted in Tab. 1, the independent grid has 432502 rectangular volumes. This mesh will be employed for all 
vascular channels studied here.  
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Table 1. Grid independence as a function of the pressure difference (∆P) for H/L = 0.67, D1/D2 = 0.1 and ϕ = 0.1.  
 

Number of elements ∆P (Pa) ε ≤ 1.20 × 10-2 
12796 15102.87 5.47 × 10-3 
24780 17509.88 1.37 × 10-3 
51601 19263.35 9.10 × 10-2 
99120 19789.23 2.70 × 10-2 
203479 20266.06 2.40 × 10-2 
432502 20508.15 1.20 × 10-2 

 
3. RESULTS AND DISCUSSION 
 

Firstly, it is evaluated the effect of the ratio D1/D2 in the range (0.1 ≤ D1/D2 ≤ 1.0) over the resin flow resistance (R). 
Figure 2 shows this effect for the ratio of H1/L1 = 0.67, ϕ = 0.1 and ReD2 = 1.0. In this figure, only the range (0.6 ≤ 
D1/D2 ≤ 1.0) is shown to evidence the optimal region. In Figure 2 it is possible to notice one intermediate point of 
optimal for (D1/D2)o = 0.76 that minimizes the resin flow resistance. The once minimized resistance obtained for 
(D1/D2)o is Rm = 453.73. It is worthy to mention that, the subscripts “o” and “m” means once optimized geometry and 
once minimized resistance, respectively. The minimal magnitude of R (Rm) is nearly 32 times lower than that obtained 
for the lower extreme of ratio D1/D2 (D1/D2 = 0.1) and approximately 7 % lower than that achieved for the upper 
extreme of D1/D2 (D1/D2 = 1.0). This behavior is in accordance with the analytical predictions of Bejan and Lorente 
(2004) for this configuration. 

In order to investigate the causes for this behavior, the pressure field distribution for three configurations 
investigated here: D1/D2 = 0.1 (lower extreme), (D1/D2)o = 0.76 and D1/D2 = 1.0 (upper extreme) are depicted in Fig. 
3(a), (b) and (c), respectively. For lower ratios of D1/D2, Fig. 3(a), the flow resistance is higher than the optimal 
geometry, (D1/D2)o, due to the large stricture in the vertical channels. In this sense, it is generated a non-uniform 
distribution of pressure field, with a step variation from the horizontal channels of diameter D2 to the vertical ones. For 
the upper extreme ratio of D1/D2 = 1.0, Fig. 3(c) the pressure distribution is more homogeneous in comparison with the 
case seen in Fig. 3(a) being only slightly poor distributed in comparison with the optimal one, Fig. 3(b). This results 
shown that the optimal shape will be achieved for the most homogeneous distribution of pressure, i.e., in agreement 
with the constructal principle of “optimal distribution of imperfections”. Figure 4 shows the velocity magnitude field for 
the same cases: D1/D2 = 0.1, Fig. 4(a), (D1/D2)o = 0.76, Fig. 4(b) and D1/D2 = 1.0. The velocity fields corroborate the 
previous findings obtained for the pressure fields. It is also clearly exhibited the poor distribution of velocity for the 
lower case, while for the other cases it is noticed a better distribution of velocity. The velocity distribution obtained for 
D1/D2 = 1.0, Fig. 4(c), is slight suppressed in the vertical channels in comparison with the optimal configuration, 
(D1/D2)o, leading to a increase of resin flow resistance.  
 

 
Figure 2. The effect of the ratio D1/D2 over the resin flow resistance (R) for the fixed ratio of H/L = 0.67. 

 

ISSN 2176-5480

1968



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

 
         a)                                                       b)                                                     c) 

 
Figure 3. The pressure field distribution in the vascular channels with ReD2 = 1.0, ϕ = 0.1, H/L = 0.67 and: a) D1/D2 = 

0.1 (lower extreme), b) (D1/D2)o = 0.76 and c) D1/D2 = 1.0 (upper extreme). 
 

 
        a)                                                       b)                                                     c) 

 
Figure 4. The pressure field distribution in the vascular channels with ReD2 = 1.0, ϕ = 0.1, H/L = 0.67 and: a) D1/D2 = 

0.1 (lower extreme), b) (D1/D2)o = 0.76 and c) D1/D2 = 1.0 (upper extreme). 
 
The same procedure was repeated for the optimization of vascular channel with ϕ = 0.1, ReD2 = 1.0 and H/L = 1.5. 

Figure 5 shows the effect of D1/D2 over the resin flow resistance (R). It can be observed a similar behavior to that 
reached for the previous case (H/L = 0.67). However, the point of optimal is displaced from (D1/D2)o = 0.76 for H/L = 
0.67 to (D1/D2)o = 0.881 for H/L = 1.5. The optimal shape performs 48 times better than the worst arrangement achieved 
for D1/D2 = 0.1 and nearly 3.0 % better than the upper extreme value of D1/D2 investigated (D1/D2 = 1.0). Other 
important observation is that the results reveal the no existence of an universal shape for the vascular channels 
arrangement that minimizes the resin flow resistance. The shape for the vascular channels adapted to the domain 
available for occupation, similarly to what is naturally performed by the rivers in the background, i.e., the same 
mechanism used in nature for the best distribution of fluid flow. 

Figures 6 and 7 shows the pressure and temperature field, respectively, for the three ratios of D1/D2: D1/D2 = 0.1 (the 
lower extreme), (D1/D2)o = 0.881 and D1/D2 = 1.0 (the upper extreme). Similarly to noticed for the case with H/L = 
0.67, for this case (H/L = 1.5) the best performance is achieved when the pressure and velocity fields are distributed in 
the most homogeneous form, i.e., the geometry which facilitates the access of the internal currents. 

 

 
Figure 5. The effect of the ratio D1/D2 over the resin flow resistance (R) for the fixed ratio of H/L = 1.5. 
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4. CONCLUSIONS 
 

Two different arrangements of vascular channels were numerically studied here and their geometry was optimized 
by means of Constructal Design, mimicking the resin flow of regeneration fluid in composite materials. The 
arrangement of vascular channels consisted in two horizontal channels of diameter D2 connected with two vertical 
channels of diameter D1. The channels of resin flow were distributed in a solid domain with two different ratios of H/L: 
H/L = 0.67 and 1.50, and the ratio of D1/D2 was optimized for both configurations. The optimal ratio was that one which 
minimizes the resin flow resistance. For all of evaluated configurations the ratio between the areas occupied by the 
channels and by the solid domain was kept fixed (ϕ = 0.1). It was considered a two-dimensional, laminar and steady 
state flow (ReD2 = 1.0). The conservation equations of mass and momentum were solved numerically by means of the 
finite volume method (FVM).  

The results showed that the optimal geometric configuration has a flow resistance several times lower than that 
found with the worst geometry. For H/L = 0.67, the ratio (D1/D2)o = 0.76 conduct to a fluid dynamic performance nearly 
32 times superior than that found for D1/D2 = 0.1 (the worst case). For H/L = 1.50, the optimal ratio (D1/D2)o = 0.881 is 
almost 48 times higher than those found for the worst performance, D1/D2 = 0.1. The best shapes were achieved when 
the pressure and velocity fields has the most homogeneous distribution, i.e., according to the constructal principle of 
“optimal distribution of imperfections”. The results also revealed the no existence of an universal shape for the vascular 
channels arrangement that minimizes the flow resistance. In other words, the shape adapted to the domain available for 
occupation – the same mechanism used in nature for the best distribution of fluid flow, e.g., the distribution of river in 
the background. 
 

 
a)                                                       b)                                                    c) 

 
Figure 6. The pressure field distribution in the vascular channels with ReD2 = 1.0, ϕ = 0.1, H/L = 1.5 and: a) 

D1/D2 = 0.1 (lower extreme), b) (D1/D2)o = 0.76 and c) D1/D2 = 1.0 (upper extreme). 
 

 
   a)                                                  b)                                                        c) 

 
Figure 7. The velocity field distribution in the vascular channels with ReD2 = 1.0, ϕ = 0.1, H/L = 1.5 and: a) D1/D2 = 

0.1 (lower extreme), b) (D1/D2)o = 0.76 and c) D1/D2 = 1.0 (upper extreme). 
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