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Abstract. The structural design of laminate composites commonly involves an optimization process in order to get the 

optimal stacking sequence. However, optimization processes have high computational costs. An alternative is to use a 

low cost approximation (a metamodel) to substitute the complex model during the optimization process. Metamodels 

are usually built by fitting the response of a high fidelity model evaluated in some sampling points of the design space 

and can be especially useful in optimization problems of composite structures. This work uses the latin hypercube 

design of experiments to choose the sampling points and the support vector regression (SVR) to develop a metamodel 

for buckling loads of composite plates under compression. Support vector regression is one extension of support vector 

machine for function estimation. It is based on the framework of statistical learning theory. The metamodel 

development was divided into three stages. In the first stage the samples were selected applying latin hypercube design 

in database construction. In the second stage the finite element method was used to obtain the buckling load. Finally, 

the support vector regression was used to obtain the metamodel. The performance of the metamodel was evaluated and 

the results are presented for buckling load responses 
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1. INTRODUCTION  
 
Laminated composites are a class of materials that have anisotropic properties. They require optimal stacking 

sequence when applying in engineering structures. In order to obtain an effective design of composite materials this 
work focuses on buckling stability. In this way a metamodel or surrogate model was developed using design of 
experiments and support vector regression techniques to predict the buckling load of composite plates. Since the 
optimization process has high computational cost, it is necessary to seek helpful resources for perform the buckling 
analysis of composite laminates. In this context the approximation of solutions for metamodels has become attractive. A 
metamodel is a procedure which creates an approximation or interpolation of a given phenomenon, that is, it is the 
response of its behavior. The response may be a physical experiment or a simulation of a number of points in the field. 
These methods seek an answer known for certain numbers of points based on statistical techniques and the metamodel 
is developed as surrogate of the expensive simulation process. Support vector regression (SVR) is one extension of 
support vector machine (SVM) for function estimation. It is based on the framework of statistical learning theory or 
machine learning. Here, SVR was developed associated with latin hypercube to estimate or map the buckling load of 
composite laminated. The metamodel development was divided into three stages. In the first stage the samples were 
generated varying the angle in increments of 5 degrees to simulate by analytical processes of the buckling load. In the 
second stage the finite element method was used to obtain a buckling load or critical load with the same samples. The 
relationship between design variables and the predict response were models in finite elements analysis or in analytical 
equations. In the third stage the experimental samples were determined applying latin hypercube design and SVR was 
used to obtain a metamodel for approximating the buckling load. The proposed technique for predicting the buckling 
load was demonstrated by numerical examples. The supervised learning applied with support vector regression was 
computed for training and validate samplings. In both analyses the correlation factor, a statistical measurement of data, 
are much close to the output vector modeling.  
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2. LAMINATED COMPOSITES BY METAMODELS 
 

As described by Mendonça (2005), the composite material is a set of two or more different materials combined in a 
macroscopic scale, to function as a unit, aiming to obtain a set of properties that none of the individual components 
presents. Laminated composite materials consist of layers of at least two different materials that are bonded together 
(Jones, 1999). More specifically, a laminate is a stack of lamina with different orientations of the principal material 
directions. Lamina is a single layer or ply of unidirectional composite material (Staab, 1999). The Figure 1 shows a 
laminated composite stacking sequence and the discrete angles or orientations fibers of each lamina. The numbers of 
plies may also tailor with many laminas. As these materials can be easily tailored with specific sequence that required 
their applications, many different kinds of applications are increasing in diversity and quantities. 

 

 
 

Figure 1. Laminated composite plate  
 

The potential advantages of composite materials are their ultrahigh strength and stiffness fibers that can be tailored 
to efficiently meet design requirements. These advantages are used in many industries applications as automobilist, 
spatial and aeronautic. 

Laminated composite structures with buckling behavior are studied to obtain a safe and reliable design. The accurate 
knowledge of critical buckling loads is essential for lightweight structural design as exposed Leissa (1983). Classical 
buckling studies are also presented by Leissa (1993) and Arnold and Mayers (1984). Sundaresan et al. (1996) 
investigated the buckling and post-buckling of thick laminated rectangular plates with first-order shear deformation 
theory associated with non-linear strain-displacement relationships and the finite element analysis. Shukla et al. (2005) 
also studied the critical buckling load of laminated composite rectangular plates under in-plane uniaxial and biaxial 
loadings based on the first-order shear deformation theory and von-Karman-type nonlinearity. The influences of 
boundary conditions on the buckling load for rectangular plates are analyzed by Baba (2007). Recently, Srinivasa et al., 
(2012) presented the buckling studies on laminated composite skew plates using finite element. In order to obtain the 
best stacking sequence of laminated many optimization techniques are developed to solve these combinatorial 
optimization. Le Riche and Haftka (1993) optimized the stacking sequence of a composite laminate for buckling loads 
maximization by genetic algorithm. Erdal and Sonmez (2005) developed the method to find globally optimum designs 
of composite laminates using simulated annealing in a stacking sequence of layers. The ant colony optimization 
metaheuristic is applied in optimization of laminated stacking sequence for maximum buckling load by Aymerich and 
Serra (2008). Furthermore, the optimization techniques or metaheuristics algorithm have improved the methods to solve 
hard problem or combinatorial optimization problems the computational time spend a lot of time yet. In order to 
minimize these problems the design of experiments (DOE) and metamodels are applied for stacking sequence 
optimization. Todoroki and Ishikawa (2004) studied the design of experiments for stacking sequence optimization with 
genetic algorithm. Reddy et al. (2011) presented the design of experiments and artificial neural networks for stacking 
sequence optimizations of laminated composite plates. Pan et al. (2010) worked with metamodel and support vector 
regression for lightweight design of B-pillars. Reddy et al. (2012) also used artificial neural networks to predict natural 
frequencies of laminated composite plates. Nik et al. (2012) reported the surrogate optimization algorithm to examine 
the simultaneous stiffness and buckling load of laminated plate with curvilinear fiber paths. Buckling analysis solved 
through the ratio of polynomial response surface is presented by Alibrandi et al. (2010). As informed above there are 
few works applying the support vector in the analysis of laminated composite plates. However, this work aims to study 
computer simulations applying the design of experiments and surrogate models. Latin hypercube, one of design of 
experiments, and support vector regression, one of metamodels, are proposed to analyze the buckling load by stacking 
sequence for composite laminate plate. 
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3. METAMODELING TECHNIQUES AND DESIGN OF EXPERIMENTS (DOE) 
 

A model generated from experimental tests or approximated computational functions are called metamodel or 
surrogate model. Metamodeling is defined by Wang and Shan (2007) as a process of constructing a metamodel. 
Initially, surrogate models have been applied in expensive analysis and simulation processes in order to reduce 
computational time. The approximate model is considered also a surrogate of simulation model. Recently, 
metamodeling techniques have been applied in design and optimization. Applications in the design, development, or 
improvements design or processes are using this response surface methodology. The response surface means a 
collection of statistical and mathematical techniques for development, improving and optimizing processes (Meyers and 
Montgomery, 2002). The response surface can be also the physical experiment or computational simulation for a 
phenomenon based in a certain numbers of points (Simpson et al., 2008). In the review of Wang and Shan (2007) there 
are research in sampling, metamodels, model fitting, model validation, and design space exploration and optimization 
methods. A model approximation or sampling methods are based on the theory of design of experiment (DOE) which 
focuses on planning experiments across the design space. The design space is considered for maximum exploration of 
engineering design problem and design of experiments is the process of selecting the better data point.  DOE is a 
method for determining the relationship between factors affecting a process and the output of that process as explained 
Reddy et al. (2012). The response approach is based on sequential experimentation explored in region of interest 
generating an approximate polynomial function. In case that the true response surface is complex due to the wide range 
of variable and extending in entire region of design space, the design are called space-filling as stated Meyers and 
Montgomery (2002). In the review of metamodeling presented by Simpson et al. (2008), this technique reduces 
computational demand and provides a rapid design space exploration with visualization. In this way fast response is 
developed for design of experiment and performance analyses in graphical approach. Meyers and Montgomery (2002) 
and Wang and Shan (2007) also presented many kinds of experimental design as central composite, box-behnken, latin 
hypercube, montecarlo and others sampling methods. In relations to metamodel there are kriging, radial basis functions, 
artificial neural network, and decision tree and support vector machine and so on. The analysis of this work is based on 
computer simulation of latin hypercube and support vector machine. A short definition about both is presented. 
 
3.1 Latin hypercube design 
 

Metamodel is based on samples and the mathematical formulation for this surrogate model is considered in a 
sampling plan. Its means a spatial arrangement of the observations (experimental or computational). Engineering design 
can become very expensive if the evaluation of the problem worked with every possible combination. In statistics this 
type of analysis is full factorial.  To minimize this kind of problem the experiments can take some minimum number of 
samples that the dimensionality of the sampling can be reduced. One of experiments that used this concept is called 
latin hypercube design. Latin hypercube sampling is generating points by stratification of sampling plan on all of its 
dimensions (Forrester et al., 2008). Cheng and Druzdzel (2000) also reported that the purpose of latin hypercube is to 
ensure that each value (or a range of values) of a variable is represented in the sample, no matter which value might turn 
out to be more important. Those points are generated in projections onto the variable axes in a uniform distribution. The 
techniques consist in building a latin square, an uniform projection plans. As exposed in Forrester et al. (2008), if 
�	designs are required, an �	x � square is built by filling every column and every line with the permutation 
of		�1,2,… , ��. However, every number must only selected once in every column and line. An example of latin square 
with � =	 3 is presented in Table 1. 

 
 Table 1. Latin square. 

 
2 1 3 
3 2 1 
1 3 2 

                  

 
A multidimensional latin hypercube are building in a similar way. Dividing the design space into equal sized 

hypercubes and placing points one in each (Forrester et al., 2008). Considering hypercube samples of size � for 
 
variables through randomly selecting 
 permutations of the sequence of integers 1, 2,…,� and assigning them to each 
of the 
 colums of the table or latin square resulting in latin hypercube design (Cheng and Druzdzel, 2000). This 
technique is applied normalizing the plan (� and 
 variables) into the [0, 1] or the variables are uniformly distributed in 
[0, 1].  

An example of latin hypercube is showed in Figure 2.  The design matrix based on two variables (angle in degree 
from 0° to 90°), is constructing randomly generating the samples for approximation model. Eight-point latin hypercube 
sampling plan are shown in Figure 2, along with its two-dimensional projections. All eight points are visible where each 
row and column of hypercube contains only one point.   
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Figure 2. Example of a two-dimensional latin hypercube design of experiments 
 

 
3.2 Support vector machine and  support vector regression 

 
The support vector machine (SVM) is a learning algorithm inspired by statistical learning theory with machine 

learning characteristics recognized as artificial intelligence. An overview of statistical learning theory was stated by 
Vapinik (1999) and the capacity of learning machines was reported by Vapinik (1993). SVM have their origins in 
nonlinear algorithm developed by Vapnik and Lerner apud in Smola and Schölkopf (2004). The background of SVM 
and its theory are found in Vapinik (1999) and Vapinik and Vashist (2009). As SVM is based in a learning method, it is 
used training procedures (Sánchez, 2003). This method is employed for solving classification or regression problems, 
mainly due to its possibility to model nonlinear data relationships in high dimensional feature space applying a kernel 
function or kernel methods (Üstün et al., 2012). The advantage of kernel trick is due to their capacity to transform the 
original input space into a high dimensional feature space, a nonlinear relationship, modeling as a linear problem. A 
tutorial about the SVM can be finding in Smola and Schölkopf (2004), additional explanation can be find in (Sànchez 
A., 2003, Pan et al., 2010, Üstün et al., 2012, Suttorp and Igel, 2006, Che, 2013). As reported Guo and Zhang (2007), in 
SVM the decision function of support vector classification or support vector regression are determined by support 
vector. In classification the support vector machine generates the hyperplane, i.e., a function that classifies some set of 
samples, for example pattern recognition. In a regression case the support vector determines the approximation 
function.  

This subsection introduces the approach of SVR. It is one of the variations of SVM. Basically, SVR technique 
search the multivariate regression function ��
� based on data set or specifically the training set �	to predict the desired 
output (Vapinik, 1993, Vapinik, 1999, Smola and Schölkopf, 2004, Üstün et al., 2012, Guo and Zhang, 2007). The 
regression function for training SVM can be formulated as 
 

��
� = ∑ ��� � ��∗����� ��
� , 
� � � (1) 
 
where	��
� , 
� is a kernel function, � is the number of training data,	�	is the parameter of the model and �� , 	��∗ are the 
Lagrange multipliers. The training data set considered as 

 
� = ��
� , ���, � = 1,… , ��  (2) 

 
where 	
� is the �th input vector for �th training sample and �� is the target value or output vector for �th training sample. 
When the output of SVR regression ��
� is quite similar of required output vector �� 	the results achieved a good 
approximation metamodel. The kernel methods use the kernels or kernel functions as (Üstün et al., 2012, Sánchez, 
2003) 

 
��
� , 
�� = 〈!�
��. !�
��〉  (3) 

 
It is an inner product and ! is in general a nonlinear mapping from input space onto characteristic space. As reported 
Üstün et al. (2012) this kernel transformation to work with non-linear relationships in the data in an easier way. More 
specifically, for nonlinear regression problem, the kernel function can do the extension the linear regression of support 
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machine or the linear regression on the higher dimensional space will be similar to the nonlinear regression on the input 
patterns (Che, 2013). The �� , 	��∗ are found applying the optimization process, minimizing the objective function 
 

�
$ ∑ ��� � ��∗���� � ��∗���
� , 
�� � % ∑ ��� � ��∗����� � �� ∑ ��� � ��∗������,�  (4) 

 
subject to  
 

∑ ��� � ��∗� = 0���� ; 	0 ≤ �� 	;	��∗ ≤ ), � = 1,… , � (5) 
 
where 	% and ) are the function optimization parameters. The accuracy of a SVR models is influenced by some 
parameters. In this case the constant )	and	%. It means that better combinations of those parameters representing the 
smaller error in a surrogate model. Regularization constant ) determines the trade-off between the training error and 
model approximation. Parameter %	is a precision in a feasible convex optimization problem, i.e., in some cases the “soft 
margin” is accepted as loss function or the amount of deviations tolerated in functions searching by vector machines 
(Smola and Schölkopf, 2004). Solving the transformed regression problem, for example by quadratic programming and 
considering that only non-zero � contribute to the final regression model (Üstün et al., 2012). The vectors obtained in 
this way are named support vectors. The regression function of SVR based on support vector may be formulated as 
(Guo and Zhang, 2007) 

 
��
� = ∑ ��� � ��∗���
� , 
� � �*+∈-.   (6) 

 
where /0 is the support vector set. 

There are many kernel functions based on variance-covariance, polynomial, radial basis function (RBF). Those 
kinds of equations can be applied in nonlinear problem to tackle the regression problem. Some kernel functions 
examples are summarized in Table 2. 
 

Table 2. Kernel functions examples (Sánchez, 2003) 
 

Kernel functions General use in 
tanh	�
5. �5 � 6� Multilayer perceptron 

%
7��‖
5 � �5‖$� Gaussian RBF network 
�1 � 
5. �5�9 Polynomial of degree : 
‖
5 � �5‖$�;� Thin plate 

‖
5 � �5‖$�<��‖
5 � �5‖� Splines 
=���: � 1��
 � ��

=���
 � ��/2  
Trigonometric polynomial of degree d 

 
 
4. LATIN HIPERCUBE AND SUPPORT VECTOR REGRESSION APPLIED TO LAMINATED 

COMPOSITES BEHAVIOR 
 
This study is focused on buckling of laminated composites. In the first analysis the laminated was considered with 

four plies for compute the data sampling and the buckling load value. The discrete angles or orientations fiber of each 
lamina varies from 0 until 180 degrees, varying in increments of 5 degrees. The results are presented in subsection 5.1 
and 5.2. The training set with input vector (orientations angle) and target value (buckling value) to predict the desired 
output are computed in two manners. First of all in analytical Matlab® code for laminate composite buckling load 
(Jones, 1999) and second with finite element method simulation in Abaqus®. The regression function by SVR was 
obtained training these data as support vector machine. Support vector regression was coded in Python script and the 
tests presented used three types of kernel functions: linear, polynomial (up 2) and radial based function (Gaussian 
function). In the second analysis the design of experiments adopted was latin hypercube as showed in Figure 2 for 
generate the sampling data set. It was developed in Matlab® and Python script. SVR applied in this case are showed in 
subsection 5.2. 
 
5. NUMERICAL RESULTS  

 
In this subsection numerical results are presented for analytical buckling load and finite element method. Both 

methods generated the sampling data set to estimate the regression function by SVR. To investigated the analysis the 
laminated are made of graphite/epoxy layers of thickness ℎ = 0,127	mm, length A = 508 mm and width � = 127 mm 
(Aymerich and Serra, 2008). The material engineering elastic modules are D� =  127.59 GPa, D$	 = 13.03 GPa, E�$ = 
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6.41 GPa and F�$ = 0.3. The critical buckling load of a simply supported laminated plate was studied with the biaxial 
load G* =	175 N/m and GH G* =⁄  0.125. Analytical buckling load factor is calculated over possible values of half-
waves 7 and J by the following equation  
 

K = L$ MNN	OP
QRS;$�MNT;$MUU�OP

QR
TOQ

PRT;MTTOQ
PR

S

OP
QR

TVW;OQ
PR

TVX
 (7) 

 
where coefficients Y�Z and Y$Z are neglected and Y�� are the coefficients of the flexural stiffness matrix. A combination 
of 7 and J applied in Eq. 7 reaches the buckling load. The critical buckling load of the plate is given by the minimum of 
K�7, J� defined in Jones (1999) and Aymerich and Serra (2008). 
 
5.1 Analytical and finite element models for buckling load and SVR 

 
In this subsection the laminated composite are made by 4 plies. The discrete angles or orientations fiber of each 

lamina varies from 0 to 180 degree with intervals of 5 degrees. Those samples are simulated in analytical buckling load, 
developed in Matlab® code, to generate the training support vector machine. Adopting the finite element method (FEM) 
the sampling vector also was simulated in Abaqus®, computing this data set by finite element method.  

The results are influenced by kernel transformations of the input data space with dimension (N x M) into a feature 
space with dimension (N x N), where N is the number of samples and M the numbers of variables (buckling load). The 
input matrix is transformed into a square matrix as reported Üstün et al. (2012). The regression fitting are computed 
with support vector regression based on the sampling above. SVR are in Python code and the kernel function was tested 
with linear, polynomial and Gaussian function. Figure 3 shows the graphics of regression results and the correlation 
factor for analytical data sampling. The better regression fitting was achieved by Gaussian kernel function with the 
parameters values as ) = 1x107 and	% = 0.0007. The regression with polynomial kernel up to degree two was tested 
but the regression fitting was not better and demanded a lot of computation time. 

 

 
 

Figure 3. Regression fitting with SVR and correlation factor for analytical buckling load prediction 
 

The correlation factor is calculated as (Meyers and Montgomery, 2002, Reddy et al., 2011)  
 

[2 = 1 � \∑ �]^_`^�T
^
∑ �`^�T

^
a (8) 

 
where 	b�  are the targets or experimental values and c�  are the outputs or predicted values from SVR. This regression 
coefficient estimates the correlation between SVR predicted values and targets values. The correlation factor calculated 
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for the sampling set was R2=0.9989. It means that the quality of results, based in statistics theory, are good and the 
regression fitting with SVR by RBF kernel function is also good. 
 

 
 

Figure 4. Regression fitting with SVR and correlation factor for finite element buckling load prediction 
  
The regression fitting for finite element sampling by SVR is also computed with linear, polynomial and Gaussian 

function. RBF function presented better regression fitting, however linear and polynomial with degree 2 was not 
appropriated in this case. Parameters ) = 1x107 and % = 0.005	are computed in regression analysis. The Figure 4 
shows the regression results and the correlation factor of the finite element data sampling. This regression coefficient 
estimates the correlation between SVR predicted values with SVR approximation model and the finite element values.  

 

 
 

Figure 5. SVR regression comparative for analytical and finite element method  

ISSN 2176-5480

1581



Rubem M. Koide, Ana Paula C. S. Ferreira and Marco A. Luersen 
Latin Hypercube Design of Experiments and Support Vector Regression Applied to Buckling Load Prediction of Composite Plates 

 

 
The correlation factor obtained for sampling with finite element method is also good. The value of it is R2= 

0,998310 and the quality of this estimated regression fitting is very similar of the factor computed with analytical 
method. A better kernel function in this case is also RBF function. SVR achieved a better performance with radial basis 
function for both analytical and MEF buckling data sampling regression as observed in Figure 3 and Figure 4. 

An overview of complete results of sampling training is presented in Figure 5. Comparative results for analytical 
and MEF adopting the SVR with radial basis function are showed. Fitting line regression related to Abaqus® and 
analytical data simulated in Matlab® are also presented. The correlation factors R2 for both analyses are plotted. The 
values presented for both methods are quite closed. 

 
5.2 Sampling with latin hypercube for analytical buckling load and SVR 

 
In this subsection the laminated composite are made with 48 plies, symmetric and balanced, with the characteristics 

presented in section 5. The stacking sequence of laminated are selected from discrete angles or orientations fiber of each 
lamina (0 degree, ±45 degree or 90 degree). As exposed in subsection 3.1, latin hypercube was adopted to obtain 
randomly the samples (stacking sequence) for approximation model or the design of experiments matrix. 60 staking 
sequence samples were generated with latin hypercube. The sample points are 5G9d, where G9d is the total number of 
design variables. These quantities are based on the studies of Pan et al. (2010) and Yang and Gu (2004). As the 
laminated is symmetric and balanced with 48 plies, G9d = 12. Table 3 presents the matrix with latin hypercube training 
support vectors. 

 
Table 3. Matrix with latin hypercube training support vectors by analytical buckling load.  

 
Laminated Composite  Stacking sequence Buckling load 

1 e±45		90$	±45		0i	90$	0i	±45			0i	90$j- 10956.77 
2 e90$	0$	90$	±45k	0$	±45	90i	0ij- 12407.53 
3 e90$	±45		0i	90$	±45	90$	0i		±45kj- 12079.96 
4 e90i		0$		90$	 ± 45		0$	 ± 45	90i		0$	90$	0$	j- 11251.83 
5 e0$	90$	±45$	90i	0$	90$	0$	90$	0$	±45	j- 10932.84 
6 e±45$		0$	90i	0i	±45	90$	0i	±45	j- 13026.76 
7 e±45$			0$		90$		0$	 ± 45$	90$	0i		 ± 45$j- 12985.38 
8 e90$		0i		 ± 45k	90$	 ± 45		0$	90$	 ± 45$	j- 12294.21 
9 e±45		0$		 ± 45$	0$	 ± 45		0$	90$	0$		 ± 45		0$	90$j- 12717.56 
10 e0$		 ± 45$	0i		90$		 ± 45		90$		0$			 ± 45		90i	j- 11027.56 
11 e90$		0$		90$	 ± 45$		0$	90$		0i	90$	±45	90$	j- 11715.58 
12 e0i		90$	 ± 45		90$		0$	90$	0$ ± 45$		0$ ± 45	j- 10768.61 
13 e0$		 ± 45$	0i		90$			0$	 ± 45$		90$		 ± 45		0$ 	j- 11370.74 
14 e±45$	0$		 ± 45i	90i	 ± 	45kj- 14612.57 
15 e0$		 ± 45$			90i	 ± 45		0i		 ± 45k		90$	j- 10059.12 
16 e0i		±45$	90i	 ± 45$		0$ ± 45	0ij- 11775.31 
17 e90$		±45	90$		0$	90$	 ± 45			90$		0i	±45	90$	 ± 45	j- 12054.19 
18 e90$		±45$		0i	 ± 45k		90i	±45$	j- 13566.91 
19 e±45		90i		 ± 45		90$	0$	 ± 45		90$		0$	 ± 45$	0$j- 13258.42 
20 e±45		90i		 ± 45		90$	0$	 ± 45		90$		0$	 ± 45$	0$j- 12848.37 
21 e±45		0$		90$	0$	 ± 45		90i		0i	 ± 45		0$	 ± 45j- 12236.34 
22 e±45		90$	 ± 45		90$	0i	 ± 45	0$	 ± 45$	0$ ± 45j- 13259.35 
23 e90$		±45	0$			 ± 45			0i	90i		0i	±45		0$		j- 12335.68 
24 e90$		0$		90i		±45		0$	90$	 ± 45			90$		0$	±45	90$	j- 11167.17 
25 e0$	90$	±45$	90$		 ± 45	90$	0$		90i	0i	j- 10932.84 
26 e0$	90$	±45	0$		 ± 45	90$	0$		90$	 ± 45			90$		0i	j- 11874.33 
27 e±45	90$		0i		90$	 ± 45$		90i		0$	90i	j- 12558.43 
28 e±45$	0$	±45			90i	±45$	90i	±45$	j- 14361.92 
29 e90$		±45$	90$		±45			90$	 ± 45			90$	±45	90i	 ± 45	j- 13316.09 
30 e0$		90$		±45		90$		0$	90i		0$		±45	90$	 ± 45$	j- 10046.05 
31 e0$	90i		0$	±45	0i		 ± 45			90$		0$	90i	j- 11045.04 
32 e±45	90$		0i		90$	 ± 45$		0$	±45k		0$	j- 12771.83 
33 e90i	0$	±45	90$	0$	90i	0i	±45$j- 11123.00 
34 e90$		±45	90i		 ± 45k		90i	 ± 45			90i	j- 12415.30 
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35 e90i		0$		 ± 45		0$		 ± 45k			90i	0$	90$	j- 12120.44 
36 e0$	90i		0$	 ± 45	90$		0$	90$	0$		90$	±45	90$	j- 10525.93 
37 e0i		±45i	0$		 ± 45			0i	90$	 ± 45	j- 10976.93 
38 e90i		0i	 ± 45			90$		0$	±45k		0$		90$	j- 11347.52 
39 e0$		±45$	90$		 ± 45			90$		0$	±45	90$	0$	 ± 45$	j- 10059.61 
40 e±45k	0$	 ± 45$	90$	45lj- 14904.86 
41 e±45	0$	90i		 ± 45	90$	 ± 45$		0$	±45	90$ 	0$j- 13007.46 
42 e±45	90$		0i		90i	0$		90$	±45$	90i	0$j- 10824.31 
43 e±45$		90$		0$		90i	 ± 45			90$	±45k	0$	j- 13541.15 
44 e0$		90$	0$	90$	±45k	0$	90$	0$	±45$j- 11597.33 
45 e0$		±45$	90$		0$	±45$	90$	±45	90$	0$	90$j- 9811.85 
46 e±45$	90$		±45$		0i		±45k		0i	 ± 45	j- 14730.56 
47 e0$	90i		±45	90$		0$	90i		0$	±45k	j- 9493.31 
48 e90$		±45	0$		90$	0$	 ± 45			90$	±45	0i	90$	0$	j- 12205.09 
49 e±45	k		90i		 ± 45			90$		 ± 45		0$	±45$	0$	j- 14759.42 
50 e90$		±45	0i		90$	 ± 45			90$		0$	±45	0$	 ± 45	90$	j- 12142.53 
51 e±45	90i		±45k	0i	 ± 45			90$		 ± 45$	j- 13809.83 
52 e0i		±45k	90$		 ± 45			90i		0i	90$	j- 11296.05 
53 e90$		±45		90$		0$	 ± 45			90i		0$	±45		90$	0i	j- 12271.35 
54 e0$		±45$	0$		±45$		90$		0$	90$	0$	 ± 45	0$	j- 12340.19 
55 e±45				90$	 ± 45			90i		 ± 45		90$	0$	90$	0$	90$	0$j- 13041.42 
56 e0$		90i		±45$	90i		0$	±45		90$	0i	j- 10932.84 
57 e90$		0i		±45k		0$	±45		0$	 ± 45$	90$	j- 11910.83 
58 e0i		±45	90$		 ± 45			0i		90i	±45		90$	 ± 45	j- 10835.70 
59 e0$		±45		90$		0$	 ± 45			90$		0i	±45		90$ 	0$	90$	j- 11665.05 
60 e±45	0$		±45l	90$	±45		90$	 ± 45		90$	j- 14310.21 

 
Figure 6 presents the latin hypercube sampling and SVR for buckling load laminated composite. Correlation factor 

R2 for those regression simulations is also presented. The statistical learning methods with R2 = 0.999987 for 
metamodel approximation with )	= 1x1010 and % = 0.1525 resulted that SVR is good method for response approximated 
in this case.  

 

 
 

Figure 6. Latin hypercube and SVR for training buckling critical load sampling 
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In order to validate the metamodel 15 new samples from latin hypercube were generated and tested in the same 
processes above. The parameters )	= 1x1010 and % = 0.1525 was simulated in a support vector regression. The Table 4 
presented those values. Figure 7 shows the approximation modeling for those buckling data set. The output vectors are 
much closed according with correlation factor R2=0.99999994 and the support vector regression is a good supervising 
learning method for approximating the buckling critical load of laminated composite plates.   
 

Table 4. Matrix with latin hypercube training support vectors by analytical buckling load.  
 

Laminated Composite  Stacking sequence Buckling load 
1 e	90$	±45k	0$	90$ ± 45		0$±45$	90$	±45	j- 13784.07 
2 e±45	90i		0i		90$	 ± 45$		90i	 ± 45	90$j- 12341.28 
3 e±45$	0i	90$	0$	±45$	0i		90$	 ± 45		j- 12423.90 
4 e90$ ± 45	90i		0i ± 45	0$		90$	 ± 45$	0$	j- 11943.76 
5 e0$ ± 45	90i	0i	90$	±45		0$	±45	0$ ± 45	j- 11710.18 
6 e±45$			90$		0$	90$	 ± 45		0i	±45k	0$j- 13673.65 
7 e90$ 	± 45		90i		 ± 45	0$	 ± 45		90i	0$		 ± 45$j- 12203.52 
8 e90$	0i	 ± 45		90$	±45$		0i	90$	0i	j- 11858.33 
9 e0i	 ± 45k	0$	 ± 45		0$	 ± 45ij- 10670.87 
10 e0$	90$ ± 45		90$		0$		90i	0$		±45$		0i	j- 11498.42 
11 e±45l		0i	±45		90$	0$	±45	90$	j- 14846.85 
12 e±45	0i	90$	0$ ± 45		0$	90i	0$	90i	j- 11178.99 
13 e±45		90$	0$	90$ ± 45$	0$		90$		0$	 ± 45$	90$	j- 12915.45 
14 e90$ 	± 45	0i 	± 45		90i	 ± 45$	90$	 ± 45$j- 12525.31 
15 e90$	 ± 45$	90$	0$	90$ 	± 45		0$		90i	0i	j- 12845.52 

 
 

 
 

Figure 7. Latin hypercube and SVR for validating buckling critical load sampling  
 

 
6. CONCLUSIONS  

 
Statistics theories of DOE and SVR are used in the proposed work. The design of experiments is applied to 

generate a sampling set to compute the buckling load. Latin hypercube, the design of experiment used in this work, 
explored the wide range of variable or extending in entire region of design space. The second theory, the statistic 
learning theory, is implicit in the artificial intelligence proposed by Vapinik in their support vector machine. A variant 
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support vector regression was tested in buckling load for laminated composite plate. Both theories are reported. Few 
works are found applying the support vector regression to laminate composite, however, the first approach of studies 
was simulated buckling load in analytical way and by finite element method considering the angle varying in 5 to 5 
degree. The latin hypercube was coded in Matlab® and Python and SVR was developed in Python script. The tests were 
simulated and achieved the similar results in analytical and finite element method which were considered to follow the 
analysis applying the latin hypercube and support vector regression. In order to verify the proposed method some 
sampling was generated by latin hypercube based on the angle variables for stacking sequence of laminated composite 
plate. The input sampling matrix with the number of sample and buckling critical load was computed with support 
vector regression. The correlation factor of the sampling in the regression fitting was very good, especially, considering 
that the regression function was simulated with a small data set. A metamodel worked better with radial basis function 
or Gaussian function either linear or polynomial function for kernel function. Output vector from support vector 
regression in training processes and in a validated analyses was quite closed confirming their good supervised learning. 
The numerical results confirm that SVR method is appropriated to analyze the buckling load for laminated composites 
finding an estimating function that can be used in an optimization process. The results analyzed with the correlation 
factor of sampling regression proved that latin hypercube associated with SVR is an efficient methodology to 
metamodel applied for laminated composites. Implementing this approximation model the computational time can be 
substantially reduced. 
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