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Abstract. Fast algorithms for algebraic multigrid method are presented, in which discrete wavelet transform are used 
to construct the system matrices to be solved, obtained via mathematical model discretization in different multigrid 

meshes as well as the transfer vectors for the various levels of the V cycle, used in this article. Length 2 Haar filters and 

length 4 Daubechies filters with decimation by a factor of 2 and 4 are employed in this research. The efficiency of these 

algorithms is demonstrated by numerical resolution of the two-dimensional Laplace equation. 
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1. INTRODUCTION 

 
Mechanical Engineering problems can be solved experimentally or via mathematical models. Among the advantages 

of the mathematical models there are two major situations where it could be used: (i) the absence of laboratory tests that 
are usually costly in financial terms, and (ii) a great versatility in the simulations. Mathematical models can be solved 
by analytic or numerically. In general, for specific and complex problems that appear in the daily, the models are 
basically solved numerically via computer codes. The first step is to numerically solve a mathematical model is the 
discretization of the model, resulting in a linear system of equations that can be solved using direct or iterative methods. 
An iterative method is preferred for solving a linear system as shown in Eq. (1) when the matrix A is large or sparse, 
according to (Burden and Faires, 2003). In the Eq. (1), the vector u is the exact solution being found for the system, i.e., 
unknown term. The matrix A and the vector f are known. 

 
Au = f (1) 
 
For a better understanding of the procedures for solving linear systems by means of stationary iterative methods, see 

the article (Fagundes et al., 2009a). The question of iterative methods like Gauss-Seidel (GS) is that the convergence 
becomes very slow in that the error becomes smooth. An alternative to accelerate the convergence of the problem is the 
use of the multigrid techniques. 

The multigrid is currently recognized as an efficient technique to accelerate the convergence of iterative methods. 
The basic idea is to work with different meshes. The argument is that classical iterative methods such as GS smoothing 
the error making slow its removal. And a smooth error in a refined mesh becomes oscillatory when transferred to a 
coarse mesh. This oscillatory error is easily removed with a few iterations.  

There are two types of multigrid, the geometric multigrid (MG) indicated for problems in which it is possible to 
establish a sequence of meshes, and Algebraic multigrid (AMG) useful when it is difficult or impossible to establish a 
hierarchy of discretizations. In AMG all information is obtained from the matrix of the original system. The initial 
difficulty of AMG is the choice of the matrix elements of the system refined mesh which should represent the problem 
in a coarser mesh. This difficulty was overcome by AMG via wavelets (WAMG). For a proper understanding of 
multigrid, consult the authors (Wesseling, 1992; Mccormick,  198; Briggs and Henson , 2000; Trottenberg et al., 
2001). To meet WAMG suggests the following studies (De Leon, 2000; Pereira, 2007; Fagundes et al. 2009b). 

This paper is organized as follows: section 2 presents an overview of multigrid, as well as new algebraic multigrid 
approach via wavelets (WAMG). Section 3 provides the mathematical model of the two-dimensional Laplace equation 
and the numerical results obtained via WAMG. Section 4 shows the conclusions of this work. 
 
2. MULTIGRID 

 
The first reference found in the literature concerned to accelerate the convergence of iterative processes dating from 

1950. It is a text written in Russian (Abramov, 1950 apud Fedorenko, 1964). The own Fedorenko paper citing Abramov 
was also originally written in Russian and translated into English by D. E. Brown. The term referenced in its 
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mathematical formulation is 'auxiliary net' (Fedorenko, 1964). The MG was developed in the 1970s independently by 
Brandt and Hackbusch, when they published the first practical work (Brandt, 1973; Hackbusch, 1976). 

Three elements are necessary for the implementation anyone multigrid: (i) restriction operator R which transfers the 
information from a fine mesh h to a coarse mesh H, (ii) prolongation operator P which transfers the information from a 
coarse mesh to a fine mesh; (iii) and from the matrix of the problem to be solved to the different levels of the mesh. 
Both the prolongation P and the restriction R are matrices. The matrices (of the problem to be solved) in the different 
levels can be obtained through problem discretization, if MG is being employed, or through Galerkin condition, (except 
for the AMG) which expression is (Briggs and Henson, 2000)  
 

A
H = RA

h
P (2) 

 
The computational cost for linear systems by direct methods is O(n3), while the classical iterative methods with 

Jacobi and GS is O(n2), where n is the number of unknowns. The computational cost of the multigrid technique is 
ideally O(n), i.e. the cost is proportional to the number of unknowns (Falgout, 2006). Soon for large systems the 
multigrid is a powerful technique. 

 
2.1 Algebraic multigrid via wavelest 

 
An important characteristic of the algebraic multigrid (AMG) is the strong influence concept. This enables to select 

only the most significant elements from the A coefficients matrix in the fine mesh, h, to represent the problem in the 
coarse mesh, H. However, it is known that the computational implementation is not a simple one, which allows new 
approaches to the AMG, called AMG via wavelets (WAMG). (Malla t ,  1989;  Chui,  1992;  Br iggs and Henson ,  
1993;  Moretin, 1999; Wang,  2000; Avudainayagam,  2004).  

In WAMG the prolongation operators P and restriction R that appear in Eq. (2) can be constructed via filters bank 
(Pereira, 2007; Garcia et al., 2008;Fagundes et al., 2013). In this study Haar and Daubech ies filters are used 
(Daubech ies,  1988).  

The multigrid, geometric (MG), algebraic (AMG), or algebraic via wavelets (WAMG), can be operationalized 
through the following algorithm. 
 

Algorithm 1. Correction scheme with two mesh levels 

 

1) Apply   relaxation steps in Ah
u

h = fh with an initial estimate vh 
2) Calculate rh = fh – Av

h 
3) Calculate rH = Rr

h 
4) Apply   relaxation steps in AH

e
H = rH, with null initial eH. 

5) Calculate eh = Pe
H 

6) Do vh ← vh + eh 
7) Apply  relaxation steps in Ah

u
h = fh with an initial estimate vh 

 
Algorithm 1 can be recursively implemented until the coarsest mesh possible, when step (4) must then be solved 

through direct methods, and then return to the finest mesh. This algorithm is called V-cycle. The number of cycles is 
defined as the number of times that the cycle is carried out in order to reach the tolerance required for the experiment. In 
the correction scheme (CS), the solution of the problem is solved (iteratively) in just more refined mesh. The other 
levels only the error is determined. The idea is to apply some iterations in step (1) until the error becomes smooth. In 
practice a small number of iterations is fixed, usually around 3. 

For implementation steps (3) and (5) of the algorithm 1, to WAMG, recent work (Fagundes et al., 2013) proposed 
fast algorithms without cost matrix operations.  
 
3. NUMERICAL RESULTS 

 
In this section some numerical results for two-dimensional Laplace Equation as Eq. (3) is presented. The tests were 

carried out through a computer with Intel processor (R) Core(TM) i7-2600 CPU@, 3.40GHz, 16.0 GB of RAM 
memory. The computational code was written in a MATLAB© compiler version 7.8. The correction scheme (CS), and 
V-cycle are used. The initial solution v is zero, and the method to solving linear equations system is Gauss-Seidel (GS), 
with and without over relaxation. Numerical results consider following nomenclature. WAMG via length 2 Haar filter 
(WAMG_hD2(2)), and WAMG via length 4 Daubech ies filter WAMG_hD4(2) and WAMG_hD4(4), with 
decimation by a factor of 2 and 4, respectively. The tolerance for convergence with maximum error for the lower 
residue is 10-10. 
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The Eq. (3) is solve with the Dirichlet’s boundary conditions, i.e., T(x, 0) = T(0, y) = T(1, y) = 0; T(x, 1) = sen(πx). 

The analytical solution for Eq. (3) for specified boundary conditions is 
 

)sinh(
)sinh()sin(),(






y
xyxT   

(4) 

 
Figure 1 show figures obtained from the solution of the Eq. (3) analytical and numerically for 1024 mesh points. 

Numerical solution was obtained via WAMG_hD2(2) algorithm. 
 

 
 

 
 

 
Figure 1. Numerical and analytical solution for two-dimensional Laplace Equation 

 
Figure 2 shows the difference between analytic and iterative solutions for different algorithms. It is observed, in the 

solution terms that the three algorithms are efficient. 
 

 
(a) By algorithm WAMG_hD2(2) 

 

 
(b) By algorithm WAMG_hD4(2) 

(c) Algorithm AMG_hD4(4) 

 

Figure 2. Error solutions for different algorithms  
 

The eq. (3) is solved numerically with the specified boundary conditions. The results are presented in Tab. 1 for 
4096 mesh points and three internal iterations for each algorithm above mentioned. Table 1 shows that  the 
a lgor i thm WAMG_hD4(2) obta ined  the best  r esul t  for  the invest igated case.   
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Table 1.  Computat ional  effor t  for  di fferen t  algori thms 

Algor i thm WAMG_hD2(2)  WAMG_hD4(2)  WAMG_hD4(4)  

Time (s)  17,9 12,3 111,6 

Cycle  58 39 717 

 

Fol l owing the same case  is invest igated,  on l y changing the smooth ing for  SOR with  ω = 1.6 .  

Table 2 shows resul ts.  Table shows the best  r esu l ts for  a l l  a lg or i thms evaluated.  

 
Table 2.  Computat ional  effor t  for  di fferen t  algori thms ,  GS with  ω = 1.6 

Algor i thm WAMG_hD2(2)  WAMG_hD4(2)  WAMG_hD4(4)  

Time (s)  15,8 10,1 87,7 

Cycle  51 32 556 

 

4. CONCLUSIONS 

 
Observing the numerical results obtained with this study note that the WAMG is a good alternative to numerical 

solution. Among the surveyed algorithms, the surprise is for the WAMG_hD4(2)  algorithm which performed better 
compared with WAMG_hD2(2), contradicting the literature stating that shorter filters are more efficient because they 
avoid filling the matrices for implementation of the WAMG levels. On the other hand it enhances the performance of 
the new algorithms used in this work. 
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