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Abstract. Surfactant molecules in selective solvents can self-assemble into long flexible structures of cylindrical shape,
known as wormlike micelles, and have been extensively exploited in different industrial and technological fields. However,
the structures and the mechanisms that influence the formation of the wormlike micelles under the flow action are not well
understood and the description of their rheological behavior remains a challenge. Above a threshold concentration,
wormlike micelles can entangle, forming polymer-like microstructures that continuously break and reform, and exhibit a
rich variety of viscoelastic behavior. Under imposed shear stress flow conditions, the relaxation mechanism can become
highly concentrated leading to the formation of shear-banding structures. In this work, we examine the effects of a power
law solvent model on the rheological response of wormlike micellar solutions in a steady Poiseuille flow through a planar
channel. The VCM based model is used, which represents a network scission description for concentrated wormlike
micellar solutions. The resulting equations are numerically solved using finite elements method. The simulations show
that, beyond a critical shear rate, the micellar fluid exhibits a dramatic change on the velocity profiles and on the stress
field as a result of the addition of a non-Newtonian solvent. A detailed analysis of the influence of the various fluid
parameters on the flow filed will also be made, showing that the non-Newtonian solvent exerts a deep influence on the
entanglement process on the polymer chains like formation structures.
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1. INTRODUCTION

Surfactant molecules is a very interesting topic not only from the scientific point of view but also has many engineering
and applied applications. If a selective solvent is used the sulfactant molecules can self-assemble into long flexible
structures of cylindrical shape known as wormlike micelles, or “living polymer”, and have been extensively exploited in
different industrial and technological fields (see for example Ref. Dreiss (2007)). For exemple, micellar solutions are
used as drag reducing agents in pipe flow, due to their ability to self-repair after mechanical breking, and fracture fluids
to stimulate the production from reservoir by taking advantage of their viscoelastic nature to transport solids, as well as
their micelle forming abilities when they mix with the produced oil during enhanced oil recovery.

The adequate rheological description of the so called wormlike micelles is still a challenge, and has become an very
intensive topic of scientific research (see for example Cates and Fielding (2006)). One of the models that attempts to de-
scribe the behavior of such substances is the VCM model (Vasquez, Cook and McKinley), cf. Vasquez et al. (2007). This
model represents a network scission/reforming description for concentrated wormlike micellar solutions. The original
VCM model assumes a newtonian solvent and considers that all of the non-newtonian behavior of the solution is due to
the sulfactant molecules. It is well known however, that it is not true for many industrial situations where now newtonian
solvents are largely used (see Ezrahi et al. (2006), Cates and Fielding (2006)p and reference therein).

In this work, the influence of a non newtonian solvent on the rheological response of wormlike micellar solutions in
steady Poiseuille flow through a planar channel is analysed, and a power law model is used to describe the rheological
behavior of the solvent. The resulting equations were numerically solved in the finite element software package COMSOL
Multiphysics. The simulations show that, beyond a critical shear rate, the micellar fluid exhibits a dramatic change on the
velocity profiles and on the stress field as a result of the addition of a non-Newtonian solvent. It is demonstrated that the
solvent stress has a major influence on the break down of the long chains into short chains. This fact has a great influence
on the generation or not of a centerline plug flow region due to the shear banding. The influence of the power law index
is discussed, for shear thinning fluids the long chain shear stress peak is near of the channel centerline causing a low long
chain concentration at the wall region. For shear thickening fluids the opposite behavior is observed and the long chain
molecules can reach the wall region; that is, the contribution to the total shear stress of the long chain component is less
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evident to the shear banding generation.
In section 2 of this paper, we describe our model and present the model equations. As will be discussed, the model

based on an existing network scission model for wormlike micellar solutions (the VCM model). We include a power
law model to describe the solvent. In section 3, we detail the numerical procedure used to solve the system of coupled,
nonlinear partial differential equations in the finite element software package COMSOL Multiphysics. Then in section
4, we present results and some discussion from the model and show that a non-newtonian solvent can strongly alter the
rheological behaviour of wormlike micelar solutions. Finally, we end in section 5 with concluding remarks.

2. NON-NEWTONIAN MODEL DESCRIPTION

The non-newtonian constitutive model used in this work is based on a two-species network scission-reforming model
for wormlike micellar solutions, originally developed by Vasquez, McKinley, and Cook (The VCM model); cf. Vasquez
et al. (2007). This model is itself based on a discrete version of “living polymer” theory (Cates, 1996) for wormlike
micelles. It describes an entangled fluid in which micelles species A, which are long chains of equilibrium length L,
can break apart in half to form short chains species B of equilibrium L/2, and any short two chains can recombine to
form a long chain. Species A represents the average of the long chains involved in the entanglements, with an relaxation
via reptation. Similarly, species B represents the average of the short micellar chains and the their relaxation is via a
Rouse-like mechanism. The break rate of the long species A is composed of an equilibrium breakage rate, the rate of
breakage in the absence of flow, plus an additional term that depends on the local stress and the strain rate and represents
the stress-induced breakage(Cromer et al., 2011).

The equations governing the evolution of the number density, nA and nB , and the conformational stress tensors, A
and B, associated with each species A and B are derived from the number of density distribution equations formulated
in configuration space; see the Ref. Vasquez et al. (2007) for the detailed derivations. The VCM constitutive model in
dimensionless variables is described by the evolution equations:

µ
DnA
Dt

+ div
(
− δA(2 gradnA − divA)

)
=

1

2
cBn

2
B − cAnA (1)

µ
DnB
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εµBO +B− 1

2
nBI+ div (−εδB gradB) = 2ε(−cBnBB+ cAA) (4)

where D(·)/Dt = ∂(·)/∂t + u · grad(·) is the material derivative and (·)O = D(·)/Dt − LT(·) − (·)L is the upper
convected time derivative (with velocity u and L = gradu), cA is the breakage rate of the long species A and cB is the
recombination rate of the short species B, without any additional contribution due to stress. The reforming rate of the
short chains is constant, cB = cBeq, and the breakage rate depends on the local strength rate of the flow and the extension
of the long chains, and is given by cA = cAeq + µ(ξ/3)[2D : (A/nA)], where cAeq is the equilibrium breakage rate
and ξ is a parameter controlling stress-induced network breakage; that is, a parameter that represents the degree of partial
retraction of the micellar chains upon breakage. D = 1

2 (gradu+ (gradu)T) is the strain tensor rate, where u represents
the velocity.

For a characteristic microscopic length scale we use
√
n′0Ak

′
BT
′/H ′A, and the following nondimensionalization of the

result equations is employed (cf. Vasquez et al. (2007), Pipe et al. (2010) and Cromer et al. (2011)):
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B), cA = λc′A, cB = λc′B ,

(5)

where x′ is the spatial coordinate, h is a macroscopic characteristic length scale, U0 is a macroscopic reference velocity,
HA is the spring constant of species A, k′B is the Boltzmann constant, T ′ is the temperature, n′0A is the dimensional
value of the equilibrium number density of the long species A, and λ is the effective relaxation time of the network. The
dimensionless variables in the above nondimensional equations include two ratios of time constants,

µ =
λ′A
λ
, ε =

λ′B
λ
, (6)

and two diffusivity parameters,

δA =
λ′AD

′
A

h2
, δB =

λ′BD
′
B

h2
(7)
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where where D′A and D′B are the diffusivities of the long wormlike chains, A, and the short chains B. In the this work,
dimensional quantities are denoted with a prime “ ′ ”, and dimensionless quatities without.

These evolution equations are coupled to the flow equations of conservation of momentum and mass (in dimensional
variables):

0 = div
(
− p′I+ 2ηD′ + S′

)
, (8)

divu′ = 0, (9)

where p′ is the dimensional pressure field and η is the dynamic viscosity of the solvent. The micellar contribution to the
total stress of the system is given by S′ = HAA

′ + HBB
′; when nondimensionalized using (5) a factor HB/HA =

2 appear multiplying the conformation tensor B (details of which are given later). Here, we assume that the inertial
effects are negligible throughout the flow and that the flow is incompressible. For the complete spatially inhomogeneous
equations the reader is referred to Ref. Vasquez et al. (2007).

In this work the VCM model predictions considering a power law solvent in Poiseuille flow is investigated. We
consider a straight, two-dimensional microchannel of length L and height H , so that −H/2 ≤ y ≤ H/2 and L � H .
The forcing is a constant pressure gradient in the x-direction and the velocity field has the form u = u(y)ex, satisfying
the conservation of mass divu = 0; cf. Cromer et al. (2011). Thus, the Poiseuille flow through a straight microchannel
of the VCM model the dimensionless system of equations are written as:
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where the nonlinear term (2ξµ/3)dudyA12 on the right-hand side of the each equations represent the shear stress induced

breakage of the long chains. We setU0 =
(
− dp

dx
h
%

)1/2
as macroscopic reference velocity, where % is the density of de fluid

and dp/dx is the constant pressure gradient in the x-direction. With this scaling, and (5), the dimensionless parameters in
Eq. (10) include G = n′0Ak

′
BT
′/%U2

0 which relates the microscopic elastic force for an segment of wormlike chains A and
the inertial forces. The solvent contribution to the total viscosity is given by β = ηs/η

′
0, where ηs is the solvent viscosity

and η0 is the dimensional zero shear rate micellar viscosity; see Cromer et al. (2011).
As we examine the effects of a non-newtonian model solvent on the rheological response of wormlike micellar solu-

tions, we generalized the solvent by allowing the dynamic viscosity in Eq. (10) to depend on the shear rate γ̇ such that
ηs = ηs(γ̇), where γ̇ =

√
2(D : D) = du/dy. For the non-newtonian solvent we use the power law model

ηs(γ̇) =
1

Re
γ̇n−1, (19)

with Re the Reynolds number defined as

Re =
U2−n
0 hn

K/%
(20)

where n is the index of the power law and K is the consistence index. It is well known that fluids with n < 1 are
pesudo-plastic fluids; those with n > 1 are dilating fluids (see for example Deville and Gatski (2012)).
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For the nonlinear coupled system of partial differential equations formed by Eqs. (10)-(18), we employed the well
known no slip boundary condition at the wall:

u = 0 on y = ±1/2, (21)

no flux of conformation stress tensors through the wall:

∂A

∂y
= 0 and

∂B

∂y
= 0 on y = ±1/2, (22)

and no flux of the number density of species through the wall:

∂nA
∂y

= 0 and
∂nB
∂y

= 0 on y = ±1/2. (23)

Finally, the initial conditions for the number densities and conformation stress tensors write at equilibrium as:

nA = n0A = 1, nB = n0B =
√
2 cAeq/cBeq, A = n0AI and B =

1

2
n0BI (24)

It is worth to noting that the diffusive coupling between the evolution equations for the stress tensor and microstructure
imposes boundaries conditions for both the micellar conformation tensor and number density of each long and short
chains. For the complete discussion concerning the use of these boundary conditions the reader is referred to Ref. Cromer
et al. (2011) and reference therein.

3. NUMERICAL IMPLEMENTATION

The VCM model presented in the previous section has been implemented and solved numerically in the finite element
software package COMSOL Multiphysics. In the implementation in COMSOL Multiphysics, the evolution equations
and boundary conditions were written in general form, or strong form, which is a formulation suited for nonlinear partial
differential equations (see for example Zimmerman (2006)).

We applied the PARDISO solver with a sufficiently small tolerance. All computations were carried out under the P 2

(piecewise polynomial of degree two) finite element space for the velocity u, the number densities variables nA and nB ,
and the conformation stress tensors A and B variables. The VCM numerical predictions in Poiseuille flow have been
originally given in Cromer et al. (2011) but without considering the effects of a non-newtonian solvent in their results.
Here, the values for the VCM model parameters were fitted to data from Pipe et al. (2010), the same used by Cromer et al.
(2011) in their simulations.

4. RESULTS AND DISCUSSION

It is well known that high concentration of large micelles can generate an evident plug flow region in some specific
flow situations. It will be demonstrate that the solvent contribution can dramatically change that situation.

The influence of the solvent on the velocity profiles can be observed on Figs.1a and 1b, for shear thinning fluids, n < 1,
the central plug flow region becomes more evident as the exponent index n becomes smaller. The opposite behaviour is
observed for the shear thickening situation. This fact can be explained by observing Fig.2, for shear thinning fluids the γ̇,
which is responsible for the break down of the long micellar chains, is much larger at the near wall region.

Figures 3 and 4 show the influence of the non-newtonian solvent characteristics on the long and short chains tensor.
Note that the individual shear stress contribution for the total shear stress vary in a nonlinear way. For low values of n,
the shear stress contribution due to the long chain is very low near the wall. The behaviour of number densities nA and
nB , see Fig. p6, are in agreement with the conformation stress tensor A and B (see Figs. 3 and 4). The spatial variations
in the number density for long “A” and short “B” chains is shown for several values of power law index. It is clear that the
shear stress for it component is related to the respective concentration levels. At low power law index values, the majority
of the micellar species in the flow exist as long chains in the center of the gap channel and nA is almost constant zero at
the near the wall region. The opposite behaviour is observed for the short chains and nB is almost constant at the near
wall regionp.

The viscosity behaviour is described in Fig. 5. It is clear that a two power law plateaus are present for high and low
values of γ̇. This behaviour can be described as a power law model with a Carreau like consistent index as suggested by
Cruz et al. (2013).
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Figure 1. Shear banding velocity profiles for the VCM model considering a non-newtonian solvent for Reynolds number
Re = 300, dimensionless diffusion coefficient δ = 10−1, G = 0.4, and various values of the power law index. For (a)
n = 1, 0.75, 0.5, and 0.25, (b) n = 1.25, 1.5, 1.75. It is clear that the the non-newtonian solvent have an important
influence on the sharpness of the transition between the high and low shear rate bands as well as the magnitude of the

centerline plug-flow velocity depends on the value of the power law index n.
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Figure 2. Variation in the shear rate across the the gap for n = 0.25, 0.75, 1, and 1.5. It is clear that the magnitude of the
shear rate near the wall region depends on the value of the power law index n.

Figure 3. Variation in the conformation tensor A12 of the long chain (“A” species) to the shear stress across the gap
channel for Reynolds number Re = 300, dimensionless diffusion coefficient δ = 10−1, G = 0.4, and various values of
the power law indexes: n = 0.25, 0.5, 0.75, 1.0, n = 1.25, 1.5, 1.75. The shear stress contribution due to the long chain

is very low near the wall for low values of the power law index.
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Figure 4. Variation in the conformation tensor B12 of the short chain (“B” species) to the shear stress across the gap
channel for Reynolds number Re = 300, dimensionless diffusion coefficient δ = 10−1, G = 0.4, and various values of
the power law indexes: n = 0.25, 0.5, 0.75, 1.0, n = 1.25, 1.5, 1.75. The shear stress contribution due to the short chain

is very high near the wall for low values of the power law index.

Figure 5. The steady-state shear viscosity, τ/γ̇, as a function of the shear rate, γ̇. The model results are for Re = 300,
δ = 10−1, G = 0.4, and different values of the power law index: n = 0.25, 0.5, 0.75, 1.0, n = 1.25, 1.5, and 1.75. It is

clear that a two power law plateaus are present for high and low values of γ̇.p
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Figure 6. Variation in the number density across the gap channel for Reynolds numberRe = 300, dimensionless diffusion
coefficient δ = 10−1, G = 0.4, and various values of the power law index: n = 0.25, 0.5, 0.75, 1.0, n = 1.25, 1.5, 1.75.

(a) Number density of long chains (“A” species), (b) Number density of short chains (“B” species).
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5. CONCLUDING REMARKS

We have studied the effects of a non-newtonian solvent on rheological response of wormlike micellar solutions in
steady Poiseuille flow through a planar channel. By modifying the existing VCM model for concentrated wormlike
micellar solutions through the addition of a power law model to describe the solvent, we have demonstrated the influecnce
of a selective non-newtonian solvent on the scission and reforming of micelles. As a consequence, a dramatic change on
the stress field and on the velocity profiles is observed with a high shear band developing near the walls and a low shear
rate, or plug-like flow, near the centerline of the channel. The predicted variations in the local stress viscosity versus shear
rate are similar with those observed in Ref. Cruz et al. (2013). This suggests that a non-Newtonian solvent can exert a
deep influence on the entanglement process of “living polymer” chains. In closing, we believe that the effects of selective
solvents should be consider in the modeling process of wormlike micellar solutions. However, more investigations are
needed (which include other non-newtonian solvent models, micellar systems, “living polymers” solutions, etc.) for new
insight on rheological response of micellar solutions.
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