
 

22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

Copyright © 2013 by ABCM 

 
A COMPARISON OF TWO INVERSE PROBLEM TECHNIQUES FOR THE 

IDENTIFICATION OF CONTACT FAILURES IN MULTI-LAYERED 

COMPOSITES 

 
Luiz Alberto da Silva Abreu 
Marcelo José Colaço  
Federal University of Rio de Janeiro, PEM-COPPE-UFRJ, Cx. Postal 68503, Rio de Janeiro, RJ, 21941-972, Brazil 
luizabreu@ufrj.br, colaco@ufrj.br 
 
Carlos José Santos Alves  
Technical University of Lisbon, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal 
carlos.alves@math.ist.utl.pt 
 
Helcio Rangel Barreto Orlande  
Federal University of Rio de Janeiro, PEM-COPPE-UFRJ, Cx. Postal 68503, Rio de Janeiro, RJ, 21941-972, Brazil 
helcio@mecanica.coppe.ufrj.br 
 
Ville Kolehmainen 
Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland 
ville.kolehmainen@uef.fi 
 
Jari Kaipio 
Department of Mathematics, University of Auckland, PB 92019, Auckland Mail Centre, Auckland 1142, New Zealand 
jari@math.auckland.ac.nz 
 

Abstract. This paper deals with the solution of an inverse heat conduction problem of identifying the interface thermal 
contact conductance between layers of multi-layered composite materials. Two techniques are used and compared for 
the solution of the inverse problem. One of these techniques is formulated in terms of a reciprocity functional 
approach, together with the method of fundamental solutions. This solution is composed of two steps. In the first step, 
two steady-state auxiliary problems, which do not depend on the thermal conductance variation, are solved. With the 
results of this pre-processing, different thermal conductances can be recovered by simply performing an integration.  
The other technique examined in this work is the Markov chain Monte Carlo (MCMC) method, within the Bayesian 
framework. A total variation prior is used for the spatially distributed contact conductance for the MCMC method. The 
solution of the inverse problem is evaluated with simulated temperature measurements, supposedly taken with large 
spatial resolution and large frequency, by using an infrared camera. 
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1. INTRODUCTION 

 
Thermal contact conductance is very important in many heat transfer applications, such as electronic packaging 

(Zhang et al, 2004), nuclear reactors (Milosevic et al, 2002), aerospace and biomedicine (McWaid and Marschall, 
1992), among others. It has been recognized for several years (Edmonds et al, 1978) that the increasing power density 
of some electronic equipment requires cooling devices able to remove great amounts of heat. In fact, there is an interest 
in producing microchannel heat sinks with heat removal capacities of more than 1 KW/cm2 (Jiang et al, 2001). An 
important factor in obtaining such heat removal is to have a low thermal contact resistance between the electronics and 
the cooling devices. In nuclear reactors, resistance, which occurs in the gap between the nuclear fuel and the metallic 
cladding, has become a limiting factor in exploiting reactor efficacy (Milosevic et al, 2002). 

When two materials are in contact, only fractions of them are really touching each other. Thus, there is a 
discontinuity in the temperature across the contact interface. Thermal contact resistance is defined as the ratio of the 
temperature drop to the heat flow rate across the interface. 
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Thus, lower values of Rc indicate that the difference in the temperature across the interface is low, which 
demonstrates a good contact. Thermal contact conductance, in the context of this paper, is defined as the inverse of the 
resistance (h=1/Rc). Notice that both Rc and h can vary spatially along the interface. Some studies (Halliday et al, 1996; 
Zhang et al, 2004; Liu et al, 2010; Luo et al, 2011) used the definition given by Eq. (1) to calculate the global thermal 
contact resistance of several materials. These studies, in general, used an experimental apparatus to measure the 
discontinuity in temperature and the heat flux applied. Because the discontinuity at the exact location of the interface is 
difficult to measure, they took temperature measurements at several locations and extrapolated the value of the 
temperature at the interface. Wolff and Schneider (1998) used the guarded hot plate method to determine temperature 
discontinuities across interfaces. The disadvantage of such methods is that they only predict global values of the thermal 
contact resistance/conductance. In addition, they require complicated experimental apparatus and/or some intrusive 
temperature measurements. 

Milosevic et al. (2002) used a non-intrusive method, the laser flash method, together with the Gauss method to 
estimate a constant value of the thermal contact resistance between two solids. In their paper, they were able to estimate 
this parameter when the sample materials were good heat conductors or when the thickness of the layer was relatively 
small. In addition, the accuracy of the estimate increased with higher values of the contact resistance. Thus, voids with 
very small values of the thermal contact resistance could not be very well captured. Milosevic also presented other 
results (2003) using the laser flash method. 

Fieberg and Kneer (2007) solved an inverse heat conduction problem to estimate the heat flux at the interface 
between two solids and used temperature measurements at the interface to estimate the thermal contact resistance. In 
their work, the measurements were taken by an infrared camera pointed at the location of the interface. Thus, they 
needed access to the location of the interface. In addition, a time dependent global contact resistance with constant 
spatial distribution was estimated because no interior evaluation of the interface was performed. Yang (2007) also used 
an inverse heat conduction problem to estimate a time dependent contact resistance in single-coated optical fibers. 
Although good results were obtained, intrusive measurements were required. No spatial variation was considered. 

Gill et al. (2009) solved an inverse heat conduction problem to estimate the spatial distribution of the thermal 
contact resistance. The authors mentioned that several models (as cited above) consider the resistance constant, 
although it actually varies spatially. The results obtained by the authors were very sensitive to measurement errors and 
required the use of a regularization technique. In addition, the temperatures were measured very close to the interface, 
making the method very intrusive. However, the main contribution was to estimate the spatial variation of the thermal 
contact resistance instead of using a constant value. 

Abreu et al (2011) formulated an inverse problem, within the Bayesian framework with a Markov Chain Monte 
Carlo method to identify thermal contact resistances in multilayered materials, using non-intrusive measurements, 
through the readings of an infrared camera. The direct problem was solved with a hybrid approach, based on the 
Generalized Integral Transform Technique and finite-differences. Results obtained with simulated measurements 
revealed the capabilities of such approach, mainly when non-informative prior models were used in the solution of the 
inverse problem. In fact, the regions of contact failures and perfect contact were accurately identified by this approach. 

Colaço and Alves (2013) presented a method to estimate thermal contact conductance in steady-state problems 
without intrusive measurements. The methodology presented was formulated in terms of a reciprocity functional 
approach (Andrieux and Abda, 1993) together with the method of fundamental solutions (Kupradze and Aleksidze, 
1963) to solve two auxiliary problems. The solution was composed of two steps. In the first step, auxiliary problems, 
which did not depend on the thermal conductance variation, were solved. With the results of pre-processing, different 
thermal conductances could be recovered by simply performing an integral. Thus, the methodology was extremely fast 
and could be used to detect flaws in different species using a short computational time. 

According to the discussion above, the determination of the thermal contact resistance/conductance is a very 
difficult task. The objective of this paper is to compare two different methodologies to estimate the spatial variation of 
this parameter without intrusive measurements. The method proposed by Colaço and Alves (2013) and the Bayesian 
framework with a Markov Chain Monte Carlo method applied by Abreu et al (2011) will be compared in terms of 
accuracy. 

 
 

2. PHYSICAL PROBLEM 

 
Let us consider a generic domain , divided in three parts  = 1 U  U 2, where 1 is the first domain, with a 

thermal conductivity K1, 2 is the second domain, with a thermal conductivity K2, and  is the contact surface between 
them. The boundary of 1 is 1 = o U 1 U , where the surface o is subjected to a prescribed heat flux and its 
temperature is measured. 1 is the lateral surface of 1, and  is the contact surface between 1 and 2. On the other 
hand, the boundary of 2 is 2 = oo U 2 U , where oo is the lower surface, 2 is the lateral surface of 2 and  is 
the contact surface. Fig. 1 shows the geometry for a two-dimensional case. 
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Figure 1. Geometry for a two-dimensional case 

 

The lateral surfaces 1 U 2 are assumed to be thermally insulated while the lower surface oo is subjected to a 
prescribed temperature. The measurement surface o is assumed to have a prescribed heat flux q imposed on it. The 
contact surface  is assumed to have a Robin boundary condition, i.e., -K1nT1 =h(T1-T2), where n is the normal 
derivative outward the boundary, K1 is the thermal conductivity of region 1, T1 and T2 are the temperatures at the 
interface of domains one and two, respectively, and h is the thermal contact conductance, which varies from zero (for 
total contact failure) to infinity (for perfect contact). Actually, in practice, large values of h are already sufficient to 
characterize a perfect contact, when the temperature drop across the interface becomes negligible.  

The statement of the interface heat transfer problem in the steady-state case for constant conductivities K1 and K2 
can be formulated as the following direct problem:  
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The inverse problem consists of estimating the function h at the inaccessible contact surface  by using temperature 
measurements Y at the boundary o. These measurements can be accurately taken with nowadays available infrared 
cameras, which can provide experimental data with high spatial resolutions and high frequencies. 

 
 

3. RECIPROCITY FUNCTIONAL APPROACH 

 
 
The reciprocity functional approach to identify the unknown function h (Colaço and Alves, 2013) is composed of 

two steps: in the first one, the temperature difference T1-T2 at the inaccessible boundary  is obtained by a first auxiliary 
problem and in the second step the heat flux is obtained at this same boundary, using a second auxiliary problem. At the 
end, both results are combined to obtain the thermal contact conductance. Indeed, according to Eq. (2.d), the thermal 
contact conductance will be given as the ratio of these two quantities. Note that if (T1-T2) is equal to zero, then we have 
a perfect thermal contact between both surfaces and the definition of thermal contact resistance does not make sense (h 
tends to infinity). 
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3.1 Obtaining T1-T2 at  

 
Consider the first auxiliary problem for some harmonic test functions F1C2(1) and F2C2(2): 
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The F1 problem is a Cauchy Problem.  Thus, there are two boundary conditions at the same surface  and there is no 

boundary condition for F1 at 0.  For the F2 problem, that is a Laplace Problem, there is one boundary condition for 
each surface of  2 domain. Note that 𝜑 appearing in Eq. (3.b) is a generic basis function, which will be defined later. 

Let us write the following identity for the domain 1: 
 

   
1

2 2
1 1 1 1 10 F T T F d


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Using Eqs. (2.a) and (3.a), both Laplacians are zero such that Eq. (4) vanishes. By using Green´s second identity, we 

can, however, obtain 
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After some manipulations (Colaço and Alves, 2013), and using the boundary conditions on 1 , Eqs. (2.c) and (3.c), 

together with Eq. (2.b) and the fact the some measurements Y are available at the boundary 0, such that T1=Y at 0, we 
obtain 
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Let us now consider another identity, for the domain 2: 
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where the Laplacians are taken from Eqs. (2.e) and (3.e) such that Eq. (7) vanishes. By using Green´s second 

identity, as well as Eqs. (2.f), (2.g), (3.f) and (3.g), we can obtain 
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As K1 and K2 are constants, summing Eqs. (6) and (8), and using Eqs. (2.h), (3.d), and (3.h), we finally obtain 
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Now we can define ℛ(F1) as the reciprocity functional, a notion used by Andrieux and Ben Abda (1993), in terms of 

the test functions F1 as 
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1
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For the calculation of the reciprocity functional, no information regarding the boundary  is needed. In addition, 

once the function F1 is specified, only the conductivity K1, the imposed heat flux q and the measured temperature Y are 
needed for the calculation of ℛ(F1). Using Eqs. (9) and (10), we obtain 
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Now take F1,j such that K1nF1,j=𝜑j at  [Eq.(3.b)], where (𝜑j) is a L2() orthonormal basis system. Then, taking the 

projection of Eq. (11) over 𝜑j, the discontinuity T1-T2 can be written as 
 
 
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To obtain the functions F1,j, we must solve a Cauchy problem with double conditions K1nF1,j =𝜑j and F1,j=F2,j at the 

boundary . The problem has to be solved thus for several functions 𝜑j. The solution of the auxiliary problem is 
independent of the direct problem, except by the geometry and the thermal conductivity K1. Thus, once the auxiliary 
problem is solved and the functions F1,j are obtained, different discontinuity configurations T1-T2 can be obtained by 
simply evaluating a different integral in Eq. (10). Equation (12) also allows to identify situations of perfect thermal 
contact (T1=T2) where we can avoid the division in the definition of h. 

 
3.2 Obtaining -K1nT1 at  

 
Consider now the second auxiliary problem, for some harmonic test functions G1C2 (1): 
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Following the same procedure used in section 3.1, we can obtain (Colaço and Alves, 2013): 
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To find the functions G1,j, we must solve a Cauchy problem with double conditions G1,j=𝜑j and nG1,j =0 at the 
boundary . Once again, the solution of the auxiliary problem is independent of the direct problem, except in terms of 
the geometry, which is the same. Thus, once the auxiliary problem is solved and the functions G1,j are obtained, 
different heat fluxes -K1nT1 can be obtained by simply evaluating a different integral in Eq. (15), which is the main 
advantage of this method because the pre-processing involved in solving the auxiliary problems is performed only once. 
Then, different thermal contact conductances can be recovered by simply solving different integrals. 

 
3.3 Obtaining h 

 
From the previous results, the value of h can be obtained as 
 

 
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It is worthwhile to mention that the two Cauchy problems were solved by the Method of Fundamental Solutions. 

More details can be found in Colaço and Alves (2013). 
 

4. MARKOV CHAIN MONTE CARLO METHOD APPROACH 

 
The MCMC method used in this work was applied to a three-dimensional version of the problem presented in Fig. 1, 

which is presented in Fig. 2. In order to make the problem close to the one presented in Fig. 1, and thus make possible 
the comparison of both methods, hoo was set to a very large value (to ensure a constant temperature at the bottom surface 
of the material), ho  to a very small value (to ensure a constant heat flux applied at the top surface) and the walls 
perpendicular to the y-axis were set thermally insulated. Also, the imposed heat flux was supposed to be steady and vary 
only in the x direction. Such problem was solved by the Generalized Integral Transform Technique. More details can be 
found in Abreu et al (2011). 

 

 
 

Figure 2. Geometry for a three-dimensional case 

For the MCMC solution of this problem, consider that the vector containing the measured temperatures is written as:  
 

 max1 2, , ,T
kY Y YY   (17.a) 

 
where kY  contains the measured temperatures of M sensors (pixels of the infrared camera) at time tk, k = 1, …, kmax, 

that is,  
 

1 2( , , , )k k k kMY Y Y Y   for max1, ,k k   (17.b) 
 
so that we have D =Mkmax measurements in total. 
The contact conductance h is assumed to be uniform within the elements of a grid analogous to that provided by the 

spatial resolution of the infrared camera. Hence, the unknowns to be estimated can be written in the form of a vector of 
parameters  

 
 1 2 , ,...,T

Mh h hP   (18) 
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Such parameters are estimated with a technique within the Bayesian framework. In this case, the solution of the 
inverse problem is recast in the form of statistical inference from the posterior probability density, which is the model 
for the conditional probability distribution of the unknown parameters given the measurements. The measurement 
model incorporating the related uncertainties is called the likelihood, that is, the conditional probability of the 
measurements given the unknown parameters. The model for the unknowns that reflects all the uncertainty of the 
parameters without the information conveyed by the measurements, is called the prior model [7,9].  

The formal mechanism to combine the new information (measurements) with the previously available information 
(prior) is known as the Bayes’ theorem (Kaipio and Somersalo, 2004; Tan et al, 2006). Therefore, the term Bayesian is 
often used to describe the statistical inversion approach, which is based on the following principles (Kaipio and 
Somersalo, 2004): 1. All variables included in the model are modeled as random variables; 2. The randomness describes 
the degree of information concerning their realizations; 3. The degree of information concerning these values is coded 
in probability distributions; and 4. The solution of the inverse problem is the posterior probability distribution, from 
which distribution point estimates and other statistics are computed. On the other hand, classical regularization methods 
are not based on the modeling of prior information and related uncertainties about the unknown parameters. 

Bayes’ theorem is stated as (Kaipio and Somersalo, 2004; Tan et al, 2006): 
 
 

( ) ( )
( ) ( )

( )posterior

 
 


 

P Y P
P P Y

Y
  (19) 

 
where posterior(P) is the posterior probability density, (P) is the prior density, (Y|P) is the likelihood function and 

(Y) is the marginal probability density of the measurements, which plays the role of a normalizing constant. 
By assuming that the measurement errors are Gaussian random variables, with zero means and known covariance 

matrix W and that the measurement errors are additive and independent of the parameters P, the likelihood function can 
be expressed as (Kaipio and Somersalo, 2004; Tan et al, 2006): 
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where T(P) is the solution of the direct (forward) problem, with known vector P given by Eq. (18)..  
A total variation non-informative prior is used in this work for the spatially distributed contact conductance. Such a 

prior density is a Markov random field, capable of accurately discriminating regions with uniform values of the sought 
distributed function (Kaipio and Somersalo, 2004). Therefore, the posterior distribution is given by: 

 
 

11( ) exp [ ( )] [ ( )] ( )
2

T TV  
   

 
P Y Y - T P W Y - T P P   (21) 

 
where  > 0 controls the smoothness of the inverse problem solution. 
Estimates from the posterior distribution typically require numerical integration. In these cases, sampling based on 

Markov chain Monte Carlo (MCMC) methods is the most feasible technique for the computation of the estimates, 
especially in cases where the number of unknowns is not too large (Kaipio and Somersalo, 2004).  

The most common MCMC algorithm is the Metropolis-Hastings algorithm (Kaipio and Somersalo, 2004; Tan et al, 
2006).  The implementation of the Metropolis-Hastings algorithm starts with the selection of a proposal distribution 
p(P*,P(t-1)) which is used to draw a new candidate state P*, given the current state P(t-1) of the Markov chain.  

Once the jumping distribution has been selected, the Metropolis-Hastings sampling algorithm can be implemented 
by repeating the following steps: 

 
1. Sample a Candidate Point P* from a proposal distribution p(P*,P(t-1)). 
2. Calculate the acceptance factor: 
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3. Generate a random value U which is uniformly distributed on (0,1). 
4. If U  ≤ , set P(t) = P* . Otherwise, set P(t)= P(t-1). 
5. Return to step 1 in order to generate the sequence {P

(1), P(2), …, P(n)}. 
 
 
We note that values of P(i)must be ignored while the chain has not converged to equilibrium (the burn-in period) 

(Kaipio and Somersalo, 2004; Tan et al, 2006). Despite the fact that all variables appearing in the mathematical 
formulation of the physical problem are generally modeled as random variables, within the Bayesian framework for the 
solution of inverse problems, in this work attention is focused on the estimation of only the contact conductance h. 
Therefore, the other parameters appearing in the formulation are taken into account in terms of their deterministic 
nominal values. Uncertainties on these judged known parameters can also be very conveniently considered in the 
inverse problem solution by using the novel approximation error approach (Nissinen et al, 2008, 2009, 2011; Orlande et 
al, 2013). 

 
5. RESULTS 

 
For the results presented below, the plate width and length were both taken as a = b = 0.10 m. The two layers were 

assumed to be of equal thickness (0.005 m), so that c = 0.01 m. Two test cases were considered, where the materials 
assumed for the layers were titanium (k = 21.9 W/mK and  = 9.32 x10-6 m2/s), epoxy with graphite fibers - 25% vol (k 
= 0.87 W/mK and  = 0.66 x10-6 m2/s), and AISI 1050 steel (k = 54W/mK and  = 1.474 x10-5 m2/s). Table 1 shows the 
test cases analyzed. 

 
 

Table 1. Test cases analyzed. 
Test-case Material for 1 Material for 2 

1 titanium epoxy with graphite fibers - 25% 
2 AISI 1050 steel AISI 1050 steel 

 
 
 
In order to compare the two formulations, for the physical problems presented in Figs. 1 and 2, the heat transfer 

coefficients at the bottom and top surfaces of the plate represented in Fig. 2 were taken respectively as 1010 and 10-10 
W/m2K and a heat flux of 25,000 W/m2 was imposed uniformly over the top surface. Thus, the 3D problem presented in 
Fig. 2 was transformed into the 2D problem presented in Fig. 1. 

Simulated temperature measurements were used in this paper. Such measurements were generated by using the 
solution of the direct problem with a prescribed variation of the contact conductance h. The simulated measurements 
were obtained through the GITT solution of the problem presented in Fig. 2. Gaussian uncorrelated errors, with zero 
mean and constant standard deviation, were added to the solution of the direct problem. The grid at the heated surface, 
where the temperature measurements were considered available, involved M = 441 elements (21 in each of the x and y 
directions), which correspond to the pixels of the infrared camera. Consequently, the contact conductance h was 
estimated in a grid of same size for the MCMC method. The standard deviation of the measurement errors (σ) was of 
0.01 oC and 0.1 oC. Since the solution of the reciprocity functional approach requires the integration of the measured 
temperature data at more points than the ones generated above, an interpolation procedure was used over these data, 
based on a cubic spline approximation. 

The contact conductance h that was selected to generate the measurements aimed at simulating one region of total 
contact failure between the layers, with thermal contact in the remaining regions. The contact failure was simulated with 
h = 0 W/m2K, while the contact was simulated with h = 1044 W/m2K. Figs. 3 and 4 show the h profiles and the exact 
temperatures at two  times for both test cases analyzed in this paper, where the largest time corresponds to steady-state 
conditions. In these figures it is also shown the maximum temperature difference for each time considered. 
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(a) Profile for the contact conductance (b) Exact temperature (t=1000s), ΔT=40°C (c) Exact temperature (t=30s), ΔT=8°C 

Figure 3. Profile for the contact conductance and exact temperatures for test case 1. 
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(a) Profile for the contact conductance (b) Exact temperature (t=200s), ΔT=14°C (c) Exact temperature (t=10s), ΔT=1.8°C 

Figure 4. Profile for the contact conductance and exact temperatures for test case 2. 

Figure 5 shows the recovered thermal contact conductance for test case 1, considering two levels of uncertainties. 
For this test case, where the bottom material has a very low thermal conductivity (0.87W/(mK)), the RF method 
presented a very unstable solution for the thermal contact conductance; whereas the MCMC method was able to 
reasonably well capture the contact discontinuity. In fact, the plot was cropped at 4000W/(m2K), since the solution for 
the RF method close to the walls assumed a very large value. The MCMC method uses a 3D formulation and thus 
recovers a 2D function of the thermal contact conductance, while the RF method used in this paper recovers a 1D 
function. Thus, to make the comparison of the two methods on the same grounds, the solution for the MCMC method is 
presented for the function estimated along the X coordinate, for Y=0.05 m (see Figs. 3 and 4). Although this result can 
indicate a lack of accuracy for the RF method, if we look at the individual values captured for the temperature 
difference and heat flux at the contact interface, estimated by the RF method (see Fig. 6), a very good result can be 
found. In fact, since the main objective of this paper is to detect the contact failures and not to quantify the thermal 
contact conductance, results shown in Fig. 6 indicate that the RF method is capable of recovering the failure with 
accuracy comparable to that of the MCMC method (notice that the heat flux goes to zero at the failure, where the 
temperature difference reaches its maximum value).  
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(a) σ =0.01 oC (b) σ =0.1 oC 

Figure 5. Recovered profile for the contact conductance for test case 1. 

  
(a) σ =0.01 oC (b) σ =0.1 oC 

Figure 6. Recovered profile for the temperature difference and heat flux at the interface, for test case 1. 
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When we consider materials with higher thermal conductivities, such as the one used in test case 2, both the RF and 
the MCMC methods present estimates for the thermal contact conductance with comparable accuracy, as one can verify 
from Fig. 7.  
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(a) σ =0.01 oC (b) σ =0.1 oC 

Figure 7. Recovered profile for the contact conductance for test case 2. 

6. CONCLUSIONS 

 
In this paper we applied two inverse problem techniques for the estimation of the thermal contact conductance in a 

double-layered material, by using surface temperature measurements. One of the techniques, the Reciprocity Functional 
Method, formulates the estimate as an integral of the measured data and thus, does not require any iterative process. The 
other technique, the Markov Chain Monte Carlo Method, is a Bayesian technique. For the test-cases examined here, 
both techniques are capable of accurately detecting the simulated contact failure.  
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