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Abstract. In this paper, we present the design of the mirror nanopositioning controller of the state-of-the-art Fabry-

Pérot interferometer to be installed in the Brazilian Tunable Filter Imager (BTFI) on the Southern Astrophysical 

Research (SOAR) telescope in Chile. The three-input-three-output multivariable (MIMO) Fabry-Pérot system is 

composed of three high-range Amplified Piezoelectric Actuators (APA) of 230 µm stroke and three 400 µm-range 

capacitive measurement systems. Its positioning control system is specified to achieve a maximum steady-state noise of 
3nm rms. A sixth-order non-minimum phase complete system model was built on top of a second-order piezoelectric 

actuator model with hysteresis effect compensation. The multivariable robust controller was designed following the 

Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) method. The built controller was validated in the real 

system and its performance was compared against a proportional-integral (PI) controller as benchmark. Simulation 

results show that the control algorithm is valid. 

 
Keywords: Dynamic Modeling, Multivariable Systems, Robust Controller, Fabry-Pérot Interferometer, 

Nanopositioning Systems. 
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1. INTRODUCTION 
 
The Brazilian Tunable Filter Imager (BTFI) is a highly versatile, new technology, tunable optical imager to be used 

both in seeing-limited mode and at higher spatial fidelity using the SAM Ground-Layer Adaptive Optics facility (SOAR 
Adaptive Module) which is being deployed at the SOAR telescope. The BTFI employs Fabry-Perót interferometers in 
order to achieve high spectral resolutions up to R ~30,000 (Oliveira et al, 2013).  

 
A scanning process is required to provide 2D-images within a given spectral band using a Fabry-Perót 

interferometer. Such process is implemented by changing the distance between its two highly reflective parallel mirrors. 
Current Fabry-Perót interferometers are designed to work in a fixed spectral resolution and allow for an initial 
adjustment of the distance between the mirrors in a range of 10 μm with a scan range of 2 μm. The proposed Fabry-
Perót interferometer is designed to work in a larger range of spectral resolutions (R ~1000 to R ~30000), which requires 
a range for the distance between the plates from zero to at least 200 μm. To meet such specific requirement, high-
excursion piezoelectric actuators (APA400MML, manufactured by CEDRAT Technologies Co) and high-sensitivity 
capacitive sensors compose the feedback nanopositioning system. Such feedback control system is needed to set and 
control the desired distance between the plates and is the aim of this work to develop different approaches to the design 
of a successful controller for the BTFI Fabry-Perót system.  

 
For the purpose of designing the control system, a parametric second-order model of the piezoactuator was created 

for the specific stack actuator APA400MML. The parametric sixth-order model of the Fabry-Perót interferometer was 
created on top of the piezoactuator model. The result is a linear, time invariant model of the system.  

 
With the parametric model of the Fabry-Perót system, the linear quadratic Gaussian with loop transfer recovery 

LQG/LTR robust MIMO (multiple input multiple output) controller design technique, presented in Athans (1986), was 
applied. This technique was chosen because it ends with a robust controller, able to reject disturbances and reject noise 
measurement with stability guaranteed in its entire range of operation. Another approach implemented for the controller 
was using the classic Proportional-Integral SISO (single input single output) design. 
 
The paper is organized in the following way: Section 2 describes the instrumentation and physical configuration of the 
device, followed by a description of the parametric second-order model of the piezoactuators and the sixth-order model 
of the Fabry-Perót interferometer (Section 3). The control problem is introduced in Section 4, and the control design is 
presented in Section 5. The simulated and experimental results are presented in Section 6 and 7. Finally, the results are 
discussed in Section 8. 
 
2. FABRY-PERÓT INSTRUMENT 
 

The Fabry-Perót interferometer is composed of two parallel highly reflecting circular glass plates (commonly 
referred as the mirrors, or etalon). One plate is mounted firmly in a cylindrical mechanical system that comprises the 
body of the Fabry-Perót interferometer, and the second one is mounted on the same cylinder through three piezoelectric 
actuators (or piezoactuators), used for fine-positioning the mirrors. The piezoactuators APA400MML are solid-state 
long-stroke actuators based on the expansion of the active material and on a mechanism to amplify the displacement 
(CEDRAT 2013), allowing a maximum displacement of 250 μm at 150 V. Three capacitive sensors measure the 
distance between the two plates of the interferometer for feedback, with sub-nanometer resolution. Such capacitive 
sensors are MCC10HS ones, which have metal-resin technology and triaxial technology manufactured by FOGALE 
Nanotech Company.  

 
Each of the three MCC10HS is fixed to the Fabry-Perót mount and the measurement target of each piezoactuator is 

fixed to the upper mirror of the etalon. In this way the sensors always measure the distance between the upper mirror 
and the fixed position of the sensor. The offset between the sensor fixed position and the bottom mirror is corrected a 
priori.  

 
The outputs of the capacitive sensors are connected directly to MC900 modules. Such modules convert the 

capacitance of the sensors measure into a voltage value that is proportional to the measured distance. The modules 
output varies from 0 to 10 volts and the sensitivity can be calibrated based on the desired measurement range. The 
bandwidth of the MC900 modules is set and fixed in 10 kHz. 

 
A picture of the Fabry-Perót etalon and the complete instrumentation of the system is shown in Fig. 1.   
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a) b)  
 

Figure 1. (a) Fabry-Perót upper mirror and piezoactuators. There is one measurement target between two 
piezoactuators, separated 60 degrees each. (b) Fabry-Perót control system instrumentation.  

 
3. FABRY-PERÓT MODEL 

 
3.1 Piezoactuator second-order model 
 

The overall mechanical behavior of the piezoactuator practically equals that of a single mass-spring-damper system 
(Adriaens et al., 2000). The differential equation used in the model of the piezoactuator system, is the well-known 
general differential equation for linear time invariant second-order systems written as: 

 
          (1) 

 
Where y and u represent the actuator displacement and input voltage, respectively. The effective mass m, in Eq. (2) 

is a function of the natural frequency Wn, and the stiffness of the piezoactuator k, which is specified in the piezoactuator 
datasheet (CEDRAT TECHNOLOGIES, 2013).  

 

            (2) 
 
The damping coefficient c, is calculated as in Eq. (3): 
           

            (3) 
 
where ζ is the damping coefficient, calculated as a function of the gain P, of the natural frequency Wn, as shown in 
Eq.(4). Both P and Wn are inferred from the piezoactuator frequency response.  
 

            (4) 
 
These equations are applied to the three piezoactuators of the system; therefore m1, c1, and k1 refer to these variables in 
piezoactuator 1; m2, c2 and k2 to the variables in piezoactuator 2; and m3, c3 and k3 for piezoactuator 3. A small time 
delay τ was introduced to the model to give a good fit to the phase curve of the real system frequency response in Fig. 3. 
  
After Laplace transformation of Eq. (1) the transfer function of the piezoactuator can be written as: 
 

          (5) 
 
3.2 Identification of the piezoactuator second-order model 
  

To build a model for the piezoactuators, the frequency response of the system was taken using a Dynamic Signal 
Analyzer (DSA HP35665A), where a sinusoidal input signal of 1 V of amplitude over the frequency range of interest (1 
Hz to 3 kHz) was applied to the piezoactuator. The resulting low displacement of the piezoactuator (±1 µm), in the z 
direction as shown in Fig. 2, was measured by the capacitive sensors and fed back to the DSA.  
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Figure 2 Test bench setup for the acquisition of the piezoactuator dynamic response. 
 
The frequency response of the piezoactuator is plotted as a Bode plot shown in Fig. 3. The parameters P and Wn of the 
piezoactuators model were taken from this Bode plot, were P has a value of -5 dB and Wn has a value of 655 Hz. 
 
The Bode plot of the transfer function of Eq. (5) is also shown if Fig. 3 (dashed red line). The system only shows one 
peak, while experimental results (solid black line) indicate that there are more peaks and valleys in between every two 
peaks. As stated by Adriaens et al. (2000), there can be infinite peaks and valleys because the mass of the piezoactuator 
is not concentrated in some points, as in linear mass-spring-damper systems of arbitrary order, but distributed over the 
element. Considering this, the model presented here is a good approximation up to the first natural frequency and such 
limitation imposes a constraint to the design of the control law (Sec. 5). In practice, as stated by Bashas et al. (2007), the 
working frequency of the piezoactuator barely exceeds its first natural frequency. Therefore, the distributed parameters 
nature of the piezoactuator could be safely neglected and the model could be reduced to a lumped parameter 
representation, especially when integrated with flexural mechanical compartments. 
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Figure 3 APA400MML piezoactuator frequency response. The solid black line represents the experimental frequency 
response taken with a Dynamic Signal Analyzer. The dashed red line is the Bode plot of the second order model. 

 
3.3 Fabry-Perót sixth-order model 

 
A sixth-order parametric model for the Fabry-Perót system, which is composed of three piezoactuators coupled 

with the mirror mass, was built on top of the previously presented model for the piezoactuator. The input of the MIMO 
system are the three piezoactuators voltage inputs, u1, u2 and u3, and the outputs are the measurement of the capacitive 
sensors, s12, s23, s13, all of them in Volts. 
 

The model takes into account the geometrical position of the sensors. The measurement targets of the sensors are 
placed 60 degrees from each of the piezoactuators, as shown in Fig. 4b. The graphical representation of the system is 
shown in Fig. 4a. 
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a) b)  
 

Figure 4. a) Schematic of the Fabry-Perót instrument. The disk represents the upper mirror, the mass-spring-damper 
systems represent the piezoactuators, and the dots on the disk represent the capacitive sensors measurement targets. b) 

Fabry-Perót system geometrical representation and force diagram. 
 

The total mass of the system is the sum of the masses of the mirror plate and the effective masses of the 
piezoactuators second order model, as stated in Eq. (6). 

 
         (6) 

 
Taking x as the total displacement of the mirror plate, the force-balance equation, applying the expression of Eq. (1) 

for every piezoactuator results in: 
 

  (7) 
 
The moment of force for the plate in the y axis is: 
  
     (8) 
 
Similarly, the moment of force for the plate in the z axis is: 
 
   (9) 
 
The distance output in the location of the capacitive sensors measurement targets:  
 

           (10) 
 

           (11) 
 

            (12) 
 
Finally, the space state representation is given by Eq. (13) and Eq. (14), with the matrix A, B, C, D defined as in 
Appendix 1a. The result is a linear and time-invariant (LTI) model with 3 controls, 3 outputs and 6 state variables. 
 

            (13) 
 

            (14) 
 
This space state representation can be transformed to a transfer function representation for each input/output relation.  
 
The transfer functions for the Fabry-Perót system are showed in Appendix 1b. 
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3.4 Identification of the Fabry-Perót model 
 
As in the modeling of the piezoactuators, presented in section 3.1, the frequency response of the system was taken 

for every input and output combination using the same dynamic signal analyzer, in the range of frequency of interest (1 
Hz – 1 kHz). The Bode plots for each input and output combination are shown in Fig. 5. 
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Figure 5 Bode plot of the Fabry-Perót system when exciting only one input. a) Input signal only in u1, b) Input signal 
only in u2, c) Input signal only in u3. Solid black line is the Bode plot of the parametric model. Dashed red line is the 

real response of the system. 
 
The presented model has limitations because some important effects, like hysteresis, creep, temperature and humidity, 
were not taken into account in order to simplify the modeling of the system allowing the use of linear control techniques 
like the LQG/LTR controller design. Nevertheless, an ongoing work (Atilio et al, 2013) that drives the piezoactuators 
by charge instead of voltage to eliminate the hysteresis and creep effects will make the linear dynamical model 
proposed here very close to the real system. 
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3.5 The Fabry-Perót modelling error 
 

With the frequency response presented in Fig. 5 it was possible to calculate the modeling error EM, using the 
following multiplicative error formula on the acquired data points: 
 

         (15) 
 
Where GR is the transfer function of the real plant and GN is the nominal model of the system. 
 

This representation for the error was adopted because it describes the error, reflected in the plant output, in the 
modeling of the plant transfer function as well as the error in the loop transfer function (Da Cruz, 1996). 

 
Next, the frequency response of the inverse of the modeling error of Eq. (16) was taken, as presented in Fig. 6. This 

helped in the analysis of how well the model represents the system as a function of the frequency and is also needed for 
the LQG/LTR design method, which will be presented in the next section. 
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Figure 6 Fabry-Perót system multiplicative modeling error 
 
Fig. 6 shows high-frequency modeling errors which impose a limit to the control system bandwidth, limiting the 
performance of the feedback system (Athans, 1986). For the current model of the system, the crossover frequency is on 
200 Hz, which is taken into account in the robust control design in section 5.2. 
 
4. FABRY-PERÓT CONTROL PROBLEM 
 
4.1 Main operation mode 
 
The main operation mode of the Fabry-Perót instrument is the scanning one, which consists in varying the distance 
between the mirrors of the interferometer, between one distance position to another, and going the way back, in n steps. 
This is repeated for a number m of times creating a sequence of ladders. 
 
4.2 Perfomance specifications 

 
The performance specifications for the feedback control system in scanning mode are the following: 
 

1. Follow the reference (small steps) signal with null steady state average error, and steady state maximum 
standard deviation of 3nm rms.  

2. Reject disturbances up to 100 Hz. 
 
Finally, step response overshoots must be minimized in order to maximize the instrument operation range. 
 
5. CONTROL SYSTEM DESIGN 

 
5.1 Proportional-Integral Compensator 
 
As a benchmark, and due to its simplicity of implementation and satisfactory performance on following step references 
with zero steady-state error, a simple Proportional Integral (PI) controller of the form of Eq. (16) has been implemented.  
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             (16) 
 
Where kp is the proportional constant, ki is the integral constant and s is the Laplace complex angular frequency.  
 
The PI compensator for the FP is assumed to be an ensemble of three SISO (single input single output) uncoupled 
control loops stated by G11, G22, G33 transfer functions as in Appendix 1.b. 
 
Coupling transfer functions of the system defined by G12, G23, G13 are neglected, meaning that we only consider the 
mass of glass over the actuators, not the coupling force provoked by the circular mirror over the three piezoactuators. 

 
The same compensator, KPI, was used for the three SISO systems.  
 
Experimental tuning has been chosen as the methodology for the PI parameters tuning. 

 
5.2 Linear quadratic Gaussian with loop transfer recovery compensator.  
 
The system is assumed to be linear in order to be able to design a robust controller. 
 
The main characteristics of the LQG/LTR robust controller are that it has nominal stability and stability-robustness to 
modeling errors while achieving good performance (Athans, 1986).  
   
The goal is to design a MIMO LQG/LTR compensator, K(s), for this model to meet the performance specifications 
presented in Section 4.2. For this purpose, three integrators, one for each input channel of the plant, were added to the 
Design Plant Model (DPM) in order to achieve null steady-state error to a step input. Also, and considering that a 
typical step size for the scanning mode is of 10 nm, the controller was set to have a noise-signal ratio smaller than 30%, 
in order to achieve a steady state maximum standard deviation of 3 nm. And, lastly, the bandwidth of the closed loop 
system was set beyond 100 Hz in order to reject disturbances up to this frequency.   
 
The model of the Fabry-Perót instrument, presented in section 3.3, includes 6 state variables. The resultant MIMO 
compensator will then have 12 states (6 states from the original system model + 3 integrators of the DPM + 3 
integrators included in the controller) and will be given by: 
 

         (17) 
 
Where A, B and C are the matrices of the space state representation of the system model, as defined in the Appendix 1a, 
G is the gain matrix of the controller and H is the Kalman Filter observer gain matrix, both defined as in Appendix 2. 
 
6. SIMULATION RESULTS 

 
6.1 Proportional-Integral compensator simulation results 

 
Figure 7 shows the block diagram of the PI control loop simulation: 

 
 

Figure 7 Unity feedback configuration for the PI controller of the Fabry-Perót system. 
 

And the simulation results for a step input signal of 5 µm is shown in Fig. 8.  
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Figure 8 Fabry-Perót model step response with PI controller simulation 
 
As it can be seen in the figure, the outputs of the system do not present overshoot in the dynamic response and 

follow the reference with null steady state error, achieving the performance requirements. 
 

6.2 LQG/LTR compensator simulation results 
 
The robust controller simulation block diagram is as shown in Fig. 9. 

 

 
Figure 9 Robust controller simulation block diagram 

 
The simulation results for a step input signal of 5µm is shown in Fig. 10.  
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Figure 10 Fabry-Perót system step response with robust controller 
 
The outputs of the system do not present overshoot in the dynamic response and follow the reference with null 

steady state error, achieving the performance requirements. 
 
 

 

ISSN 2176-5480

4808



Ana María Molina Arcila, Fábio de Oliveira Fialho, Fernando Orsatti 
High Resolution Fabry-Pérot Interferometer – Dynamic System Modeling And Nanopositioning Control System Design 
 

7. EXPERIMENTAL VALIDATION OF COMPENSATORS 
 

For the experimental validation of the compensators in the real system, the simulations presented in Fig. 7 and 9 are run 
in real time using a sample frequency of 4500 Hz. The digital to analog interface between the computer and the 
piezoactuators, and the analog to digital conversion between the MC900 output and the computer, is done by two data 
acquisition boards, NI 6221. 

 
7.1 Proportional-Integral compensator experimental results 
 

The experimental results for a step input signal of 5µm is shown in Fig. 11.  
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Figure 11 Fabry-Perót system step response with PI controller 
 
As it can be seen in the figure, the outputs of the system do not present overshoot in the dynamic response and follow 
the reference with null steady state error. However, the output signals of the system, acquired by the data acquisition 
boards, present a steady-state standard deviation of 140 nm. The source of this noise was studied, reaching the 
conclusion that the noise is introduced by the computer and the data acquisition boards, which will not be part of the 
system once the control algorithm is implemented in an isolated controller board in the future. For this reason, the noise 
specification used for the validation is the relative specification of noise-signal ratio of 0.3.  
 
For these experimental results, the signal has a steady state standard deviation of 0.140 µm for a 5 µm mean step signal, 
resulting in a noise-signal ratio of 0.03.  
 
7.2 LQG/LTR compensator experimental results 

 
The experimental validation of the LQG/LTR robust controllers with hysteresis compensation is part of our current 

work. For the final version of this paper we are planning to show the results of this validation. 
 

8. CONCLUSIONS 
 
This paper has proposed a linear time-invariant second-order model for the amplified piezoactuator APA400MML and 
a sixth-order LTI model for the Fabry-Perót system of the BTFI instrument. These models were used to design a PI and 
a robust LQG/LTR nanopositioning controllers for the Fabry-Perót system. 
 
The simulation and implementation results of the controllers have verified the effectiveness of the proposed control 
schemes, demonstrating that they can achieve a fast and smooth reference following response, rejecting disturbances up 
to 100 Hz and having a satisfactory noise-signal ratio. 
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APPENDIX 1. 
 

a. Fabry-Perót space state sixth order model matrix definition: 
 

 

 
 

 
 

b. Fabry-Perót system model transfer function representation: 
 



G11 
0.7765s5  3.378 104 s4  7.549 106s3 1.6611011s2 1.345 1013s 2.004 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
 

 



G12 
0.6612s5 2.875 104 s4 5.228 106s3 1.1611011s2 6.726 1012s1.002 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
 

 



G13 
0.7764s5  3.378 104 s4  7.409 106s3 1.6611011s2 1.345 1013s 2.004 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
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

G21 
0.8499s5  3.378 104 s4  7.705 106s3 1.6611011s2 1.345 1013s 2.004 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
 

 



G22 
0.8499s5  3.378 104 s4  7.613106s3 1.6611011s2 1.345 1013s 2.004 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
 

 



G23 
0.7237s5 2.875 104 s4 5.354 106s3 1.1611011s2 6.726 1012s1.002 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
 

 



G31 
0.6361s5 2.859 104 s4  3.377 105s3 1.157 1011s2 1.046 1012s 1.00 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
 

  



G32 
0.5416s5  3.362 104 s4 1.833106s3 1.657 1011s2  7.772 1012s 2.002 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
 

  



G33 
0.636s5  3.376 104 s4  7.109 106s3 1.6611011s2 1.345 1013s 2.004 1017

s6 163.4s5  7.311106s4  7.79 108s3 1.742 1013s2 9.014 1014s1.342 1019
 

  
 
APPENDIX 2. 
 
The LQG/LTR design methodology starts designing a plant, called the target loop that meets the performance 
requirements using Kalman Filter techniques, choosing a proper µ constant and L matrix.  
 

            
 
Using the algebraic Ricatti equation (ARE) and the chosen value for µ, find the Kalman Filter observer gain matrix H. 
 

           

             
 
After the Kalman Filter gain matrix is obtained the recovery process is made. As stated in Doyle (1982), if the system is 
a square system the A and B matrices of the system are controllable, the A and C matrices are observable and the 
transmission zeros of the system have all negative values, a controller gain matrix can be calculated as:  
 

             
 
Where ρ > 0 and Kρ is obtained solving the following ARE: 

          
With the compensator gain matrix, G, the compensator K for the target loop is defined as: 
 

 
 
This compensator is made for the design plant model that had augmented dynamics (three integrators in the input 
signal). Given that we want to design a compensator for the model of the system we need to include the integrators on 
the compensator as in: 
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