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Abstract. In a real process, all used resources, whether physical eeligped in software, are subject to interruptions
or operational commitments. However, in situations in \Wtoperate critical systems, any kind of problem can bring big
consequences. A coupled water tank system was used as aatedsnodel for implementing and testing the proposed
methodology. The developed system should generate a sghalssto notify the process operator about the faults that
are ocurring, enabling changes in control strategy or cohprarameters. Due to the damage risks involved with sensors
actuators and amplifiers of the real plant, the data set offthéts are computationally generated and the results will
be collected from numerical simulations of the process madidee system will be composed by structures with Artificial
Neural Networks.

Keywords: Critical Systems, Fault Detection, Fault Diagnosis, Acidl Neural Network.
1. INTRODUCTION

In the past, the automated supervising process, were nuustiposed by some kind of system that had the simple task
of checking whether a given variable, such as strength,dspmessure, level or temperature, exceeds a certain limit o
threshold previously specified. If it has ocurred, an alaras wiggered and the operator was warned about the incident,
acting in a way to correct the problem. Sometimes the proldeuild also be corrected in an automatic way for some
protection subsystem. This procedure, in many cases, wagyhrto prevent failures or severe damages to the process,
but, the failures or errors were detected only after a aegariod of time, which prevents the system from obtaining a
detailed diagnosis about what happened (Isermann, 2006).

Considering the methods of Fault Detection and Diagnofd()Rhat use Artificial Neural Networks (ANN), a series
of contributions can be highlighted, such as @éaal.(2000), where a system composed by an Elman neural netwark wa
trained to detect faults on engine units, Gatal. (2005), that combines wavelet transform with ANNSs to detaagtts in
rotation machines, Tiaet al. (2007), where a neuro-fuzzy system was used to detect faulpipelines and Khaleet al.
(2010) where a principal component analysis was combinéd\fds to detect faults in manufacturing processes.

Based on this methods, this paper aims to develop a FDD syst#mANNSs for a dynamic process. The system
should be capable to generate alert signals to the procesatopin such way that they can be post processed by another
system. Thereunto, the system will use a residual errorrgegte by the difference between the real measured variable
and the estimated value of this variable obtained from antifieation structure of a study case model.

In the following sections the proposed system will be désdiwith more details. The second section should summa-
rize the main concepts of the used ANNSs, showing its architeand model. Following, the third section will show the
basic concepts and terminology about FDD, and the propossdrs will appear after the study case model description
at the fourth section. The last two sections shows the obdaiesults and conclusions.

2. NEURAL NETWORKS

According to Haykin (2000), the Artificial Neural Network&INs) are parallel structures, massively distributed,
composed by simple processing units, named neurons. Thestuses resemble the human brain due to its ability to
acquire knowledge from the environment. This learning e&¢hrough an adjustment of the connection weights, or
synaptic weights, which exists between neurons. Theseentions stores the information acquired by the network.

Among the various neural network architectures, such dalrbdsis function networks, Kohonen networks, support
vector machine and so many others, this work uses a MultiRgeceptron (MLP), due to its simplicity and applicability
The training algorithm used was the Levenberg-Marquarit4), available in mathematical software Matf&b

2.1 Process identification with neural networks

As described in Lucena (2005), the model suitable strustfoenonlinear system identification are generalizations
of linear models. These structures are characterized lyréggession vector, which is a vector containing the \a@es
used to estimate the system output. Depending on the chbtbe oegression vector, different neural model structures
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may arise. FIR (Finite Impulse Response), ARX (AutoRegvessXternal input), ARMAX (AutoRegressive Moving
Average eXternal input), OE (Output Error) and SSIF (Inrimres State Space Form) are some of the best known linear
structures. If the regression vector is selected for ARX etgdfor example, the structure of the neural model will be
called NNARX (Neural Network ARX). Similarly, there will a8b NNFIR models, NNARMAX, NNOE and NNSSIF.

In this work a NNARX model, based on Ngrgaaatdal. (2000) description, was used in the process identificatimh a
in the FDD networks. The regressors of the model, relatesétwork output with its past values of input and output.
Because of that, the use of these regressors are fundarfarggstem identification. The mathematical expressioh tha
describes the nonlinear model used can be viewed in Eq. (1).

gt) = f(yt—1),...,y(t —n),u(t —d),...,u(t —d—m)) 1)

In this equationy represents the estimated outpiithe transport delay; the output ordenn the input orderf(-) a
nonlinear function maped by the neural netwaykhe output and: the input. In order to ease the implementation, in all
trained networks, the input order was the same as the outget @n. = n).

An estimative generated by NNARX structure is always staditece it represents purely algebraic relations between
the variables and there is no feedback of the estimated butpu

3. FAULTS, ERRORS AND FAILURES

The computer systems can be characterized by five fundahpeaperties: functionality, usability, performance, tos
and dependability(Kaanicheet al, 2002). According to Lapriet al. (1992), the term dependability is related to the
system ability to provides a service that can be, justifiat#liable. Following this reasoning, Asieniset al. (2000)
subdivides a dependable system into the three parts, asnishdwig. 1.

Availability
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Dependability Failure
Threats { Error
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Figure 1. Dependability systematic classification, basedwzieniset al. (2000).

Means

The first group is used to provide an analysis about the guaflia dependable system. The second group brings the
terms used to express undesirable threats — but, in praipt unexpected — that makes the system become not depend-
able. Finally, the third group shows the means and the tgalesiby which it becomes possible to offer a dependable
service.

About the second group, the terfi@ilure must be used to indicate when occur a deviation of the systdmauior,
making it incapable to provide the service for which it wasigeed. Anerror, however, is related to the system state and
can lead to a failure. Briefly, if there is an error, then thisra sequence of actions that can lead to a failure. Last, but
not least, the ternfault is the cause of an error and is related to a defect. Normally,said that the terrfault may be
defined as a defect that has the potential to generate errors.

3.1 Fault detection and diagnosis

In order to ensure the success of planned operations andnigecthe behaviorial problems in the process, many
supervision and monitoring systems are being developed:oiing to Chianget al. (2001), among other functions,
these systems can detect, diagnose and eliminate faustgrieg that the process operations satisfies the perfonanc
specifications.

Additionally, the information provided by a monitoring $gs1 should not only inform the system operator about what
is going on, but also help him to take corrective actions gteoto remedy the problem. As a result, the ineffective time
will be reduced, the system protection will be increasedtardperational costs will be decreased.
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Chianget al.(2001) shows that there are four states involved in the gog®nitoring: fault detection, fault isolation,
fault diagnosis and fault recovery, as shown in Fig. 2. Alitfoarranged as a sequence of actions, all states are ngsalwa
strictly necessary. Often, automated changes from one &tanother is transparent to the operator, displaying ey
crucial information to take appropriate action.

No

l Fault

Detection

Fault
Identification

Fault
Diagnosis

Fault
Recovery

Figure 2. States of fault detection and diagnosis, basechiam@et al. (2001).

4. PROPOSED SYSTEM

This paper proposes a system development for FDD in a dynproiess. The process in question consists of a
coupled water tanks system developed by Qudhsschematically represented in Fig. 3(a).

<—— Tank 1 (T7)

| /<—— Pressure sensor iy (Area~ 0.1781 cm?)

Tank’s output orifice (a;)

< Tank 2 (1)

{J<———— Pressure sensor Pump 2 Pump 1
Tank’s output orifice (a2)

-/ :‘
@y (Area~ 0.1781 cm?)
‘Water reservatory

E e —
(a) Original configuration. (b) Proposed configuration.

Figure 3. Case study — Coupled Water Tanks.

Pump

The tanks{} e 1) are mounted on the front of the support base and positiansdah way that the water flows from
the upper tank®;) to the bottom tank®) through orificea;, and from thel; to the water reservatory through orifice.
The output water flow varies according to the orifiegsandas, available in three different diameters.

Since the two tanks have the same cross-sectional drea- (A, = A), their dynamics are similar. However, find a
mathematical model that adequately describes the dynarhgesch tanks is not so simple, because the general equations
of motion and energy that describe the fluid flow are quite dwafed. Therefore, some fundamental assumptions are
needed. So, it is assumed that the water in the tank is in@ssimle and the flow is non-viscous, non-rotational and
regular (Dorf and Bishop, 2009). Considering these aspatfter a series of algebraic manipulations using Berrisulli
equation, the equations for a direct feed/in can be described by Egs. (2) and (3).

L= Ly, [ VI @
Ly = [%v2] VI - [% V29| VI 3)

wherek,, represents the pump flow constavit,the voltage applied to the pumg, the 7;’s output orifice,L; the water
level inT; andg the gravity acceleration.
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In order to make the proposed system more generic and ppssdke further studies on fault tolerance, the system
was modified by introducing another pump with the same cheariatics as the first one, as shown in Fig. 3(b). Clearly,
in this case, the system has no more only a single input améesoutput (SISO). Now, the equations of the multiple
input and multiple output (MIMO) system can be described bg.E4) and (5).

K

L = =, - |5V VI (4
o = v [GvE] Vi [ val v ®
whereV/, is the voltage applied to the first pump a¥ig, is the voltage applied to the second pump.
4.1 Simulated faults

Despite the various faults that may exist in a coupled wateks, only some of these were selected to be simulated,
as shown in Tab. 1.

Table 1. Selected faults — Classification.

Fault # | Name | Acronym
Sensors
1 Uncalibrated Gain UGSeF
2 Uncalibrated Offset| UOSeF
3 Noise Sensitivity NSSeF
4 Burned Sensor BSeF
Actuators
5 Uncalibrated Gain UGAF
6 Uncalibrated Offset| UOAF
7 Noise Sensitivity NSAF
8 K, variation K, AF
9 Burned Actuator BAF
Structural
10 Tank’s Leak TLStF
11 Tank’sa; variation Ta;VStF
12 Tank’sa; obstruction| Ta;OStF

Since in these types of simulation the system is normallysgg to adverse conditions, which could cause damage
throughout the structure involved, the proposed systenceagputationally simulated.

4.2 Neural structures

The neural networks for identification and FDD should be ftélsechosen, since an inappropriate choice can make
the system innefective, not performing the function for ethit was assigned.

The neural structure for identification, that must représie® dynamics of the system, has a single neural network,
which receives as input the past values of the levBl§k — 1) and Lo(k — 1), and voltages applied/,, (k — 1) and
Vp, (k — 1), generating, on its output, estimated levels, calledk) and L, (k). The best trained neural network to this
purpose was obtained from a second-order model NNARX wightemeurons on hidden layer. The validation mean
square error was.73 x 1076,

The structure of FDD, in turn, was composed by twelve neuealvarks, in which each of these is associated with
a single fault, configuring a set of “specialists”. Howevers not a committee machine, since there is no network that
performs the decision-making.

The input of each network is composed by the past values d¢tets, L, (k — 1) and L, (k — 1), the voltages applied
to the pumpsy,, (k — 1) andV,,(k — 1), and the residual errors produced from the difference betvike real and
estimated output; (k) = L;(k) — fi(k). The output of each network is a 2-bit binary word, which aades whether the
fault is being detected i, in T, or in T} and7y simultaneously. A schematic diagram can be viewed in Fig. 4.

Opting for this disarticulated neural networks structucews by several factors. An example that can be highlighted
is the fact that more than one fault may be happening simediasly in the system. In this case, if only one neural network
was used, beyond th€ distinct words (one for each fault), the FDD system shoutticate each fault combination in the
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Figure 4. Neural network structure for fault detection aradosis.
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output. Considering only the twelve selected faults, takemby two, a total of 66 possible combinations should to be
generated. If all combinations were considered this numioeitd grow exorbitantly.

Moreover, a simple modification at one neural network will affect in any other. Thus, if at any time is noticed that
the introduction of a new variable improves the detectiarofee fault, only one neural network needs to be retrained. In
future works, hibrid structures — like neuro-fuzzy netwgrkalman filters, statistical analysers and many more —pean
also utilized as a specialist.

Once known all used subsystems, the proposed FDD systenmecaevieed in Fig. 5. Attach this system to another,
or associate it with a Fault-Tolerant Control System (FT,€8h be made in a simple way, by processing the information
available at the output interface, named Fs, ..., F,,. However, this is not the objective here.

Faults
Controllers fz
v,
Setpoint — Tj ) Error Ly (? o
O/ ) imalati
) ~ Erorl, (. Vp, Simulation
Setpoint — T C
+\ =2 o )
S
Identified
Model
. J
R l
p
FDD
System
|
F F F,
Output Signals
Figure 5. Proposed system schematic diagram.
5. RESULTS

5.1 Data acquisition

The first step to be taken for the identification and detectimtesses, is to obtain the experimental samples for
a supervised neural networks training. So, the data adiquisivas done by a stimulation of the system through the
application of pseudo random binary signals (PRBSSs) in éitygasnt of each tank and in the system fault parameters.

The range values applied to the setpoint varies between ithienom (zero) to the maximum (thirty), while for the
fault detection, the values were applied as shown in Tab. 12 Vi&alues generated in the interval determined by the
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minimum and maximum of each parameter were multiplied bydfault values and applied to the model.

Table 2. Applied values for training step.

Fault Default value | Min | Max | Representativeness
UGSeF 0,16° 0,8 1.2 Upto+6 cm
UOSeF 1,0 -3,0 | 3,0 Upto+3cm
NSSeF 1,0 -0,03 | 0,03 Upto+9cm

BSeF 1,0 0,0 | 0,0 -

UGAF 1,0 0,8 1,0 Up to -3 Volts
UOAF 1,0 -1,0 | 0,0 Up to -1 Volts
NSAF 1,0 -0,03| 0,03 | Upto+0,45\olts
K,,AF K, 07 | 11 -

BAF 1,0 0,0 | 0,0 -

TLStF Qi 0,25 | 0,75 | 25a 75% ofu;,,,

Ta;VStF Gipen 0,75 | 1,25 +25% Of a;yep
Ta;OStF Qi 00 | 05 _

* Established by the manufacturer.
** Cross-sectional area is approximately 0.178%.cm

During the identification process were obtained 6,000 (sdusand) samples, wich is equivalent to 10 (ten) minutes
of simulation. About the fault detection process, 12,00@:(te thousand) samples were obtained, wich is equivatent t
20 (twenty) minutes of simulation. All data were collecteithia sampling period of 100 ms, identical to that used in the
real process.

In possession of the obtained values, the training of theaheetworks was started. All networks were trained in
offline mode with the neural networks toolbox of Matfapusing the LMA algorithm.

5.2 Selected neural structures

As has been seen, the best network used for the model idetitificwas obtained from a second-order NNARX
structure with eight neurons on hidden layer. This netwoals welected among 54 others who had been trained for this
same purpose and has a mean square eridfx 1076,

The number of trained neural networks increases significémt the FDD. For each order of the NNARX structure,
the number of the neurons on hidden layer was changed thmes.tiEach time that number was changed, six neural
networks were trained, which guarantees that the seleet®ebrks would not be compromised by convergence problems
due the bad weights initialization or due to local minima.u$hfor a second order structure, for example, were trained
3 x 6 = 18 neural networks.

The networks were selected from a second, third and foudkrcstructures. So, the number of trained networks
would amount tol8 x 3 = 54 for each fault. However, there were twelve faults to be &din Thus, the total was
54 x 12 = 648 distinct neural networks.

Because of this large number, all the networks went throughlidation process with three simulations. In each
simulation were recorded Type | and Type Il errors, comppsin average error for each structure. The average values
obtained during the selection process can be viewed in Tab. 3

The system was composed after a selection of the best seaaund submited to the final simulation of one minute
and forty five seconds, divided into intervals of fifteen getoas shown in Fig. 6.

Ty’s Fault
Ty’s Fault T»’s Fault T»’s Fault
—_—~ —_— —_——~
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T Tlme
0 15 30 45 60 75 90 105
N——— ———— ———— N———
No fault No fault No fault No fault

Figure 6. Final simulation — Intervals.

In this final test, the values of each fault parameter werée fegd during the interval in which that fault was acting
on the system. The values of these parameters are shown.id.Tab
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Table 3. Best ANNSs for FDD.

. . Correct | Typel | Typell Total
Fault Order | HLN*| Train. # Answers E¥E)rs Eyrrr)ors Errors (%)
UGSeF 4 28 2 23491,33| 203,33 | 305,33 2,12%
UOSeF 4 28 5 23890,33| 8,66 101 0,46%
NSSeF 4 20 3 23317 | 324,66 | 358,33 2,84%
BSeF 4 20 4 23994 0,66 5,33 0,02%
UGAF 2 8 3 20710,33| 1626,66| 1663 13,7%
UOAF 4 28 3 23075,33| 635,66 289 3,85%
NSAF 2 8 6 14153,33| 3407 | 6439,66| 41,03%
K,,AF 2 8 5 20764,66| 1551,33| 1684 13,48%
BAF 4 28 6 23980 2,33 17,66 0,083%
TLStF 4 24 1 23774,33 74 151,66 0,94%
Ta;VStF 2 8 3 22465,33| 437 1097,66 6,39%
Ta;OStF 2 12 4 23995,66 1 3,33 0,018%

* Hidden layer neurons.

Table 4. Used parameter values.

Sim. # Fault Modified value

TLStF (yz; = Gyep /2
Ta;VStF | a;' = ayen/2
Ta;OStF | a;’ = ayep/4

1 UGSeF | Gain=0,128
2 UOSeF -2,0cm
3 NSSeF +2%

4 BSeF Gain= 10,0
5 UGAF Gain=0,8
6 UOAF -0,5 Volts
7 NSAF +2%

8 K,,AF K,, =3,45
9 BAF Gain=10,0
10

11

12

5.3 Obtained results

The obtained results can be seen in Figs. 7 to 18. In theseesn#te red hatched areas represents the intervals in
which the fault was detected i , while the blue hatched areas represents the intervalsichvite fault was detected in
Ts.

The first fault to be simulated was UGSeF, whose the resuttdeaseen in Fig. 7. In this simulation the value of
the sensor gain was reduced to 80% of the default value. $nfithire, the system identified the presence of the fault
only when the parameter value was modified. After this peitiogl fault was “compensated” by the controllers, who sent
more voltage to the pump, causing the return of the outputdséetpoint. However, that “compensation” was made in a
improperly way, since the sensor’s reading had an error .20

Thus, when the value read by the sensors is 24 cm, the tankig thoverflow, reaching, in fact, the upper limit of
30 cm. In an academic application this may not representiakya equipments beyond those that the water could cause.
But, in critical applications, that “compensation” mayrgiseveral damages.

The system behaved in a similar manner to that in UOSeF andFJ BS observed in Figs. 8 and 9. Especially for the
TLStF simulation, another output orifice, namegd, was considered. This orifice has the same characterigtibe tank
output orificea;, but has a different diameter.

The results for these faults are not consistent with the Jabhis situation may be ocurring because the networks has
identified the rapid dynamic changes of the PRBS, failinglantify continuous abrupt changes.

A possible alternative to solve this problem would be to usary flags, activated at the time that the first variation
was detected and deactivated in the next detection. Theseifldicate that the faults are acting during the time iraterv
in which they were active.

Another simulation shows that the NSSeF was easily idedtifiethe system, as shown in Fig. 10. However, due to
the noise with uniform distributior{2%), the system can not detect the fault at some points. Aetpeints, the value
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generated by theand function keeps the signal next to the setpoint.

Unlike the NSSeF, the simulation performed to the NSAF wassooeasily identified, as shown in Fig. 11. The
results obtained fof; can even be considered reasonable, while the resultg;fare clearly unacceptable, since none
of the points in which the fault should have been identifiedenecognized by the network. Nevertheless, the results are
consistent with the Tab. 3, where the total error exceeds 40%

As well as NNSeF, all other remaining faults were also eadiytified by the system, as shown in Figs. 12 to 18.

6. CONCLUSIONS

This work was developed in order to provide a FDD system faowpted water tanks. Thereunto, the system uses a
neural structure to process the available values and infloeraser about the faults that are ocurring.

Since this structure is completely disjointed, anothelniégues can be mixed to compose a hibrid fault detection and
diagnosis system. The used techniques can replace thegerkeivhose the performance were below the expectations.

Among the twelve selected faults, eight were easily ideattiind three had a satisfactory performance, with a small
detection problem that can be solved with binary flags. Therotault was not correctly identified fdr,, but can be
considered reasonable for detectionign

The results may improve when the real values are used, $ieg@ary within the range of values in which the networks
were trained. This situation can correct the problem thatiscfor detecting UGSeF, UOSeF and TLStF, avoiding the
use of binary flags.

Thus, the system had a satisfactory performance and coutdgmble to identify about 92% of the proposed faults,
proving that MLP networks are efficient structures for idigcation and for the fault detection and diagnosis.

Once tested with various excitation signals, the systerfddmeiattached to a FTCS. In this case, the signals generated
by the FDD system will serve as an “alarm”. The FTCS, in turaymerform the controllers reconfiguration by modifying
their parameters, or even their structures, making thagyegem keep functioning properly, until the fault is cotest
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Figure 10. NSSeF simulation — Assumming a uniform dis-
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Figure 13. UGAF simulation — Actuator’s gain reduced to Figure 14. UOAF simulation — Actuator’s offset config-
80% from the default value.
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Figure 15.K,,AF simulation —K,,, reduced to 75% from Figure 16. BAF simulation — Actuator’s gain reduced to

the default value.
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Figure 17. T;OStF simulation — Where; = ayep/4.

ured to—0.5 Volts.
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Figure 18. T;VStF simulation — Where; = ayep/2.



