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Abstract. It is well known to engineers that the majority of structural failures come from fatigue. The rate of fatigue 

crack growth in a structure depends on naturally random parameters, such as, the tensile strength, fracture properties, 

stress history and stress intensity factor. In this work, fatigue crack growth problem is solved using three probabilistic 

reliability methods: First Order Reliability Method (FORM), Second Order Reliability Method (SORM), and Monte 

Carlo Simulation (MCS). The problem consists of a rectangular plate with an edge crack, where the crack growth is 

calculated using classical Paris's law equation. Simulated results with different number of cycles limit are used to 

compare the probability of failure results obtained by these three stochastic modeling methods.  

 

Keywords: Crack Growth, Uncertainty, Fatigue  

 

1. INTRODUCTION  

 

Probabilistic fracture mechanics is a field in modern engineering that is rapidly developing. For the specimen to be 

analyzed fracture mechanics requires a knowledge of the crack. By considering the randomness of crack size and 

location, material properties, external loads and geometry, deterministic analysis provides an incomplete evaluation of 

the safety of a specimen. To address these problem probabilistic fracture mechanics is a useful tool, since it combines 

fracture mechanics with stochastic methods. The basic of probabilistic fracture mechanics and its application to the 

analysis of uncertainties in structural systems can be founded in Liu and Belytschko (1989). By considering the 

complexity of the failure mechanism and the aim of this paper in to evaluate the reliability methods, a combination of 

Paris's equation (Paris and Erdogan, 1963) with the theory of statistics and structural reliability has become an 

interesting problem. Three probabilistic methods will be used: First Order Reliability Method (FORM), Second Order 

Reliability Method (SORM) and Monte Carlo Simulation (MCS). Simulated results with different number of cycles 

limit are used to compare the probability of failure results obtained by these three stochastic modeling methods. 

 

2. CRACK GROWTH 

 

2.1. Fatigue Crack Growth and Laws 

 

Based on fracture mechanic theory, fatigue crack growth models have been developed to evaluate damage tolerance 

in structures. Several papers have been published on fatigue crack growth prediction during the last decades. A review 

of the literature, which includes many fatigue life prediction models, can be founded in Beden at al, 2009.  

A better understanding of the fatigue life under cyclic loading can be obtained from the block diagram suggested by 

Beden at al, 2009 ("Fig 1"). It shows that the process consists of two phases, the crack initiation life (nucleation and 

micro crack growth) followed by a crack growth period (macro crack growth) until failure.  

 

 
 

Figure 1. Block diagram of the fatigue life 

 

This process can also be understood from the fatigue crack growth rate curve ("Fig 2"), also referred to as a da/dN 

versus ΔK curve, which is defined by Regions I, II and III. Region I includes the early stage of a fatigue crack and the 

crack growth rate. Also, defines the stress intensity factor threshold, ΔKth, below which fatigue cracks should not 

propagate. Region II includes the intermediate crack propagation stage where the use of linear elastic fracture 
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mechanics (LEFM) concepts is acceptable. Region III includes the fatigue crack growth at very high rates generated by 

the fast and unstable crack growth prior to final failure. The curve approaches to the fracture toughness, Kc. 

 

 
 

Figure 2. Fatigue crack growth rate curve 

 

For this study we will be concerned about fatigue crack growth in the Region II, since it is where LEFM and Paris's 

Law can be applied. The steps of fatigue crack growth may be stated in this form: Determine the number of cycles Nf  

required for a crack grow from a certain initial crack size ai to the final crack size af, the crack length a corresponds to N 

loading cycles (Gdouto, 1993). 

Power law described by Paris and Erdogan (1963) is a simple method for predicting fatigue crack propagation. It 

describes the fatigue crack propagation behavior in Region II. The equation represents the first application of fracture 

mechanics to fatigue and is given by 

 

mΚc
dN

da
 ,               (1) 

 

where ΔΚ = Κmax  Κmin , with Κmax and Κmin referring to the maximum and minimum values of stress intensity in 

the load cycles. The constants c and m are determined empirically from a log(ΔΚ) × log(da/dN) plot. The stress intensity 

factor is given by 

 

aΚ  ,                (2) 

 

where σ is stress at the crack. By calling the stress change as Δσ we obtain, 

 

aΚ                (3) 

 

The number of cycles to failure, Nf , can be obtained by integrating “Eq. 1” with respect to a from the initial crack 

size, ai , to the final crack size, af  , to obtain 
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where KIC is the fracture toughness. By integrating and substituting final crack size “Eq. 5” into “Eq. 4”, the number 

of cycles to failure is obtained as 

 

   2/12/

2/12/1

mac

aa
N

m
m

m

i

m

f

f









               (6) 

 

 

3. STOCHASTIC METHODS  

 

This section presents the probabilistic analysis methods: first-order reliability method, second-order reliability 

method and Monte Carlo simulation. These methods evaluates the probability of failure by determining whether the 

limit-state functions are exceeded. Also, other statistical properties of structural response can be evaluated. 

 

3.1. First-Order Reliability Method (FORM) 

 

Knowing the system's limit-state equation or performance function, FORM method can be used for reliability 

analysis. The limit-state equation can be a linear function of correlated or uncorrelated normal variables or a non-linear 

function represented by its first-order approximation. If there are non-normal variables, the method requires users to 

work with equivalent normal variables (Haldar and Mahadevan, 2000). 

The development of FORM method can be traced to second-moment methods: First-order second moment (FOSM) 

and Advanced First-order second-moment (AFOSM). They consider the first and the second moments of random 

variables, i.e. the mean and standard deviation.  

In these methods, the performance function can be defined as Z = R − S. Assuming R and S statistically independent 

normal random variables, the failure is assumed when R < S or Z < 0, so the probability of failure is obtained by  
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where  is the Cumulative Density Function (CDF) of a standard normal distribution. 

The probability of failure depends on the ratio of the mean value of Z to its standard deviation. This ratio is known 

as the safety index or reliability index and can be written as  
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For the FORM method, the initial reliability index is of extreme importance, since the initial value may change 

completely the final results. Choi at al (2007), present a method to compute the initial reliability index using mean-

value and standard deviation value of the approximation limit-state function g(X) given by 

 

g
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where the mean value and the standard deviation are given by 
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Thus, one can rewrite the probability of failure as: 
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 1fP             (12) 

 

Having the safety index, it is possible to calculate the new design point that is the most probable failure point. 

These calculations are made in an iterative form based on the FORM algorithm (Machado at al, 2011).  

 

 

3.2. Second-Order Reliability Method (SORM) 

 

SORM is also employed to calculate the reliability of the system, but with a second order approximation. It includes 

additional information about the curvature of the limit-state function. Taylor series approximation used in the FORM 

method ignores the terms beyond the first-order, while the SORM method ignores the terms beyond the second order 

(Haldar and Mahadevan, 2000).  

In FORM method first partial derivative of the limit-state equation were evaluated at the design point α, and can be 

written as 
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while for the SORM method the second derivative of the limit-state equation will be calculated at B, and is given by  
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Before compute the probability of failures it is necessary to calculate H matrix and k index. To generate the H 

matrix, an initial matrix is selected as  
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Gram-Schmidt orthogonalization procedure is applied to “Eq.15”, and the resulting matrix is H. Once the H matrix 

is obtained, a matrix A, whose elements are denoted as aij , is computed as 
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In the rotated space, the last variable, Yn, coincides with β vector computed by FORM. The limit-state can be 

rewritten in terms of a second-order approximation in this rotated standard normal space Y’ expressed by  
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Finally, for the calculated kj  used in Breitung approach, are computed as the eigenvalues of the matrix A. The limit-

state equation is approximated by a second order function and in this method the probability of failure is calculated with  
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Researchers have developed different SORM methods, here will be using Breitung approach (Choi, Grandhi and 

Canfield, 2007).To calculate the probability of failure is necessary to make use of a Laplace method for the asymptotic 

approximation of multidimensional integrals  
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where I(β) is a integral over a fixed domain whose integrand is an exponential function. Making use of given 

results, the asymptotic form of  I(β) is shown as 
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In the case of independent standard normal random variables, the joint probability density function is given by 
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Substituting (x1, x2 ,..., xn) → (y1, y2 ,..., yn) with yi = β
-1

 ui  and "Eq. 16", into this equation, we obtain: 
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Figure 3 illustrates a flow-chart for SORM method. 

 

 

 
 

Figure 3. SORM method flow-chart 

 

 

Calculate the orthogonal matrix H 

 

Compute the second-order derivates of the limit-state surface 

at U* and form the B matrix. 

Calculate the matrix A 

Compute the main curvatures kj of the failure 

surface at the MPP, make eigenvalues matrix A. 

   
2/11

1

1





 
n

j

jf kP 
 

Initial data computed with FORM:  

new design point (xi
*
) and β. 

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

3.3. Monte Carlo Simulation (MCS) 

 

Monte Carlo simulation is used as stochastic solver. It consists in solving the problem repeated times, each one of 

them with a new random input. The mean and the standard deviation of the result are calculated through the samples 

generated, and the computation procedure is quite simple. First, select a distribution type for the random variables; 

generate a sampling set from the distribution; and conduct simulations using the generated sampling set.  

To generate random variables, the Matlab
®
 functions lognrdn and normrnd were used. It is necessary to pay 

attention on these functions parameters for the purpose of generating the correct random values. 

Haldar and Mahadevan (2000), suggest two different forms of applying MCS method, one more used form 

calculates the probability of failure as the ratio between the number of failures and the total number of events. It can be 

show in mathematical form as 

 

N

N
P

f

f               (23) 

 

where N is the total number of realizations and Nf is the number of failures. This first form will be referred as MC1. 

The second form is the same utilized in FORM method, the reliability index is calculated with "Eq. 8" and the 

probability of failure utilizes the "Eq. 9", this form will be called MC2. 

 

4. NUMERICAL EXAMPLE AND DISCUSSIONS   

 

For comparison between methods, an example of fatigue crack growth of a finite width rectangular plate with edge 

crack subject to constant amplitude is used (Figure 4).  

The state-limit equation is given by Nf   Nallow< 0. The limit Nallow and the m index are deterministic variables, being 

m = 3.32 and limit Nallow will be changed from 3,000 up to 8,000 cycles. The random variables and their distributions 

were validated by Millwater at al, 1994, and are given in Table 1. Table 2 summarize the results of this crack growth 

problem and figure 5 to12 illustrate graphic results which presents a better visualization of methods comparison. Figure 

13 show Cumulative Distribution Function (CDF) plots.  

From results, in all situations the MC1 method converge better with FORM and SORM methods, while MC2 

becomes more efficient when increase the probability of failure. Both, MC1 and MC2 methods start to converge with 

approximately 1,000 realizations. 

As seen in Table 2 the FORM and SORM methods present minimal variance in this numerical example. A possible 

explanations for two methods have the same approximation, could be that only the first order polynomial is sufficient, 

the second order approach by SORM was not necessary. Therefore approximations about FORM that represent the 

linear system obtain satisfactory results. 

To summarize, the three methods achieve similar reliability results and satisfactory approximations. 

 

 

 

 
 

Figure 4. Rectangular plate with edge crack 
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Table 1. Random Variables Properties for Crack Growth Problem 

 

Random Variables Distribution Mean Standard Deviation 

Load(ksi), Δσ Lognormal 100 10 

Initial Crack Size (in), ai Lognormal 0.01 0.005 

Paris constant, c Lognormal 1.2x10
-10

 1.2x10
-11

 

Fracture Toughness  (ksi/√in), KIC Normal 60 6 

 

 

 

Table 2. Probability of Failure for Crack Growth Problem 

 

 

Limit (Nallow) 

MC1(100,000) MC2(100,000) FORM SORM 

1,000 0.0939 0.1540 0.083500935743235 0.083500935743190 

3,000 0.4045 0.3420 0.391516055614330 0.391516055614317 

3,704 0.5121 0.4224 0.500000044605869 0.500000044605869 

4,000 0.5568 0.4633 0.541751124130008 0.541751124130003 

5,000 0.6752 0.5829 0.662925705199224 0.662925705199210 

6,000 0.7671 0.6939 0.753990830741950 0.753990830741932 

7,000 0.8337 0.7925 0.819574591105803 0.819574591105786 

8,000 0.8817 0.8682 0.865602475593301 0.865602475593286 
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Figure 5. Probability of failure with Nallow= 1,000 

 

Figure 6. Probability of failure with Nallow= 3,000 

 

Figure 7. Probability of failure with Nallow= 3,704 

 

Figure 8. Probability of failure with Nallow= 4,000 

 
Figure 8. Probability of failure with Nallow= 4,000 
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Figure 13. Cumulative Distribution Function of Cycles to Failure 

 

 

 

 

 

 

Figure 9. Probability of failure with Nallow= 5,000 

 

Figure 10. Probability of failure with Nallow=6,000 

 

Figure 11. Probability of failure with Nallow=7,000 

 

Figure 12. Probability of failure with Nallow=8,000 
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