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Abstract.  It is shown that the one dimensional mass transfer with temporary retention in the positive x-direction 

may be dealt with a simple discrete model. From the clues provided by the discrete approach, particularly those 

concerning the need to introduce a third order differential term and appropriate control parameters to define the 

validation range of the model, it is possible to propose the kinematic laws governing the mass transfer phenomenon 

with temporary retention for a continuum system. Two types of excitation states, one characterized by the linear 

momentum and the other by the angular momentum, are introduce for the derivation of the kinematic laws associated 

to the continuum system. Mass conservation princple is used to derive the governing equations. The resulting 

governing equation is of the Korteweg-deVries type. A brief discussion about the governing equation and its similarity 

with the classical Korteweg-deVries equation is presented.The kinematic laws introduced show clearly that the 

solution must belong to the class of dispersive waves. 
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1. INTRODUCTION  

 

 The classical discrete approach to the one-dimensional mass transfer problem in the positive x-direction after taking 

the appropriated limits leads to the classical first order wave equation. The retention of a fraction of the moving 

particles is usually ignored. Differently from the dissipation problem where retention may be important in several 

engineering applications, as far as we know retention associated to wave motion has not deserved enough attention 

of engineers and scientists.  

This fact may be credited to the difficulty in establishing a consistent law for the retention effect and maybe to 

the lack of important applications. The formulation of a law for the continuum case is indeed difficult, but it can be 

successfully attained if we use the clues given by a relatively easy discrete formulation. 

We will see that within certain hypotheses that are not too restrictive the formulation of a temporary retention 

law may be proposed. The physical requirements for the theory to be valid may consider some idealized conditions 

as energy conservation and two particular excitation states of the particles involved in the motion. As a matter of 

fact physic-chemical laws at intermediate scales always require some idealization of the dynamical process. In 

general the physic-chemical laws assume average values for the parameters controlling the main variables assumed 

to play the major roles in the process. In other words a law in physics, chemistry or engineering is a fundamental 

tool to assemble a model that is supposed to simulate satisfactorily the real world. Validation of the model will 

determine the range of the response for which the theory is applicable.         

In the next sections we will develop the formulation of the mass transfer problem with retention first with a 

discrete approach and then for a continuum with the help of a transfer law and a retention law.  

The control parameters appearing as a logical condition from the deduction of the discrete approach are 

remarkable for they provide the admissible variation range of the coefficients of the differential terms in the 

governing equation for the model to be valid. Depending on the trapped fraction of the particles the model covers 

the different dynamical processes from the classical first order wave equation – no retention – till the stationary case 

where all particles will be eventually trapped – full retention. These control parameters are kept in the continuum 

approach and are essential for the formulation of the laws governing the process. Without the clue provided by the 

discrete approach it would be very hard to find the form of the control parameters.        

The governing equation of mass transfer with retention obtained here for a given non-homogeneous medium is 

similar to the Koertweg-deVries equation (Jager, 2006, Lighthill,1978, Whitham, 1974,) except for the sign of the 

third order differential term. Despite this small difference the behavior of the solutions might be quite different. The 

dispersion relation for the mass transfer with retention is derived and discussed briefly for the case of the linearized 

equation.   

 

2. THE DISCRETE FORMULATION.  

 

Consider the distribution law that combines partial retention with mass transfer in the x-positive direction. 

Suppose that a fraction k<1 of the initial mass in the cell n is transferred to the cell n+1 located next to the cell n to 

the right. The exceeding fraction (1-k) of the mass remains temporarily retained in the cell n. Clearly the motion has 
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Fig.1. Evolution of the mass profile for propagation in the x-positive direction with partial 

retention. 
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The analytical expressions of this law are easily written: 

 

c)-(1                                                                                                       )1(

b)-(1                                                                                                          )1(

a)-(1                                                                                                          )1(

2

1

21

1

1

1

1

1























t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

kppkp

kppkp

kppkp

 

  

Where 0 ≤ k ≤ 1. In order to keep the correct response for the intermediate steps for all values of the parameter k 

it is necessary to take double time step (t+1) and (t-1) for the calculation of the difference in time, that is, the 

calculations will be carried out with the difference  11   t

n

t

n
pp . After a sequence of algebraic operations, as shown in 

the appendix A, we arrive at the following equation (A-5): 

 

       
tt

nn

t

n x
x

x

x

p
x

x

x

x

pk
kt

t

t

t

p



































































2

2

3

3

4

3

32

2

1
 

 

Again this expression satisfies the conditions required for k=0 and k=1.Now let us define: 
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where L0, L1 and T0 are scale factors, 31

10
mLmLx   and mTt

0
 are increment size and time interval 

respectively. Substituting the above relations in the finite difference equation and taking the limits 0,0  tx  

we get: 
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Taking the proper limits and defining 
001

TLK  and 
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Clearly the equation (2) satisfies the mechanical requirements imposed by the parameter k. For k=0 the solution 

is stationary and for k=1 the solution falls in the category of a travelling wave. As in the previous problems keeping 

the control parameters explicitly in the equation is helpful even for a continuum formulation.  

It is remarkable the presence of the third order derivative in the equation of propagation with temporary 

retention. This term is required if temporary retention is to be taken into account. The derivation of a constitutive 

law for this kind of phenomenon starting from the generalized analysis of a continuum is a difficult task. The clue 

given by the discrete approach is fundamental to develop a consistent constitutive law.  

 

3. THE CONTINUUM FORMULATION 

 

The discrete approach suggests that the unidirectional transport of a bulk of particles with temporary and partial 

retention needs to incorporate a third order differential term in the governing equation. We will assume this 

condition as a milestone of the theory for the continuum problem. Besides, the control parameters multiplying the 

third and first order terms must be retained in the continuum formulation since they define precisely the limits of 

transport without retention k=1 and the steady state k=0. The parameter k as seen previously may vary within the 

interval [0,1]. Therefore we state as a fundamental axiom: 

 

Proposition 1. The governing equation for unidirectional mass transportation with retention must contain the term 
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where p(x,t) is the variable representing mass concentration, K3 is a material constant  and   1,0k .   

 

This axiom requiring the insertion of the third order term in the governing equation will provide the 

fundamental clue and direction to formulate the laws of motion. Consider two fundamental motions, namely, a 

translational motion with velocity v and a circulatory motion along a closed trajectory with a small radius δ and 

angular velocity ω. The circulatory motion may degenerate into a spin. Any particle may be excited by a 

combination of a translational motion and a circulatory motion moving along a spiral trajectory, a kind of vortex. 

The kinematic state of a particle with mass m corresponding to the translational motion is characterized by the 

kinetic energy ET =p
2
 /2m where p is the linear momentum p=mv , and the kinematic state corresponding to the 

circulatory motion is characterized by the kinetic energy ER=L
2
/2I where L is the angular momentum  L=mδ

2
ω ( or 

L=I ω for the case of a spin).    

Now let us consider two fundamental kinematic states, namely; 

 

I.  A particle belongs to the state I if it follows a straight trajectory in the x-positive direction with translational 

energy ET  much larger than the rotational energy ER. That is v .   

II.  A particle belongs to the state II if the rotational energy ER  is much larger than the    translational energy ET. 

That is  v . A particle in this state moves backwards at a very low speed.  

We will assume that a given particle may jump from state I into state II and vice-versa when excited by some 

cause such that all particles will be moving and the total kinetic energy will be kept approximately constant. 

Moreover a particle cannot be trapped permanently, that is subtracted from the process since this would mean a kind 

of sink that belongs to a different class of problems. The exchange of states may be credited to particles interaction 

with the supporting medium for instance. We assume here that all particles are either in state I or in state II. Under 

this assumption the mass conservation principle reads: 
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where p(x,t) is the specific mass, V is an elementary volume, U is the net flux of particles across the boundary 

surface ∂V and  n is the  unit vector normal to ∂V. The flux vector U may be decomposed into two components 
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representing the particles in the state I and in the state II. If we call k the fraction of particles in state I and (1-k) the 

fraction of particles in the state II we may write:       

 

  (4)                                                                                                                1 III kk UUU 

  

where UI and UII represent the mass flux of the particles in state I and in state II respectively. Note that the velocity 

of particles in the state II has a negative sign due to the initial assumption that they move backwards. Introducing 

equation (4) into equation (3) we get:   
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Now we need to introduce the constitutive relations for the continuous forward flow and for the backwards 

flow. The backwards flow is assumed to be very slow since almost all the kinetic energy is transferred to the 

circulatory motion. Therefore we may say that the (1-k) particle fraction is temporarily retained in a thin boundary 

layer in the neighborhood of the boundary surface ∂V. The first law that we may propose concerns the predominant 

forward motion: 

 

First law. The mass flux across the boundary surface ∂V corresponding to the particles in the kinematic state I is 

proportional to the mass concentration p(x,t): 

   

  (6)                                                                                                                        , 101 etxpc

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where c0 is the speed of propagation of the mass fraction k  in the x-positive direction.   

 

The corresponding physical meaning clearly expresses that the particle speed in the state I is independent of the 

mass fraction moving forward. For any mass fraction moving forward the speed is the same as the classical wave 

equation for full forward motion without retention c0 :  
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Therefore equation (6) is equally valid for the motion with and without retention. The second law dealing with 

particles in the kinematic state II is more complex and may be stated as follows: 

 

Second law.  Let ψ be a vector parallel to the direction of motion proportional to the mass concentration: 

 

  1, etxbp


ψ   

 

The parameter b is a material constant depending on the nature of the particles and the supporting medium. Define 

the blocking effect B as the divergent of the vector ψ: 
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x
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The retention effect or the ideal mass flux through the boundary surface ∂V corresponding to the particles in the 

kinematic state II is defined by a vector proportional to the gradient of B multiplied by the particle fraction moving 

forward, that is: 

   12

2

, etxbp
x

krII






U  

The parameter r̂  is a material constant depending on the nature of the particles and the supporting medium. 

 

Note that the retention effect exists only if there are particles moving forward, k > 0, that is, if the wave front is 

moving forward. Retention only doesn’t exist. For sake of simplicity and due to the lack of experimental results we 

will assume here b=constant and introduce a material constant rbr


 combining b and r̂ .  Introducing the above 

results in the equation (3) it is immediately obtained: 
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For p(x,t) sufficiently smooth the Green´s theorem gives: 
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And since V is arbitrary we finally get: 
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      For c0 , r and k constants we have: 
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Equation (8) reproduces the equation (2) with K1=c0 and K3=r.  In general however the parameters r and c0 may 

be functions o x for a non-homogeneous medium. More critical is the parameter k that in general may be expected to 

be a function of temperature and other thermodynamical variables. It is also possible that k=k(p)/k0 where k0 = k(p0) 

meaning that retention saturates for p = p0. For this case the governing equation becomes non-linear and the solution 

may be very hard to be found even for homogeneous media.  

Now suppose that the process takes place in a non homogeneous medium, such that: 

 

pccc 210
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That is the speed of mass transfer (wave speed) when retention is turned off is a linear function of the concentration 

p(x,t) increasing when the concentration decreases. That is the wave speed is higher in rarefied regions. Suppose that 

the other parameters are constants. Equation (7) then reads: 
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Equation (9) is a modified form of the KdV equation. Since 0≤k≤1 and r is positive the coefficient of the third 

order derivative is always negative and therefore it differs from the original KdV equation. This detail will certainly 

introduce drastic differences in the qualitative behavior of the solution. The redistribution law of the mass transport 

in the x-positive direction strongly suggests the formation of backscattering in the course of the evolution process.  

4. FINAL REMARKS 

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

It is remarkable that with a relatively simple procedure, taking the limit of a discrete approach, it is possible to 

show that the governing equation for one-dimensional mass transfer in the positive x-direction with retention 

requires a third order differential term. The resulting equation is a third order equation linear equation similar to the  

linearized  Kordeveg deVries equation. A fundamental difference however, namely the sign of the coefficient of the 

third derivative, may introduce substantial differences between the respective solutions. Indeed if we take a 

perturbation of the type: 
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      and introduce in a linearized KdV :  
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       For the case of equation (8) the dispersion relation is: 
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                 0≤ k≤1      and        0
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The dispersion relation for the KdV equation applies for relatively long waves as compared with the shallow 

water depth, that is when h , so that the wave speed is positive. The dispersion relation for the case of mass 

transfer with retention has no restriction in principle. As shown in the Fig.2 if k=1 the wave speed is reduced to c0  

 

representing the speed corresponding to the classical problem with no retention. If k=0 there is no motion the 

solution is stationary. Note that the dispersion relation returns always a positive wave speed. For very long waves 

the wave speed is given by 
0

kcc   and is reduced to a linear function of the mass fraction k moving ahead.  

For ε=1 the dispersion relation reaches a maximum at k=1. For very short waves ε >1 the dispersion relation 

leads to wave speeds higher than c0 for certain values of the mass fraction moving in the x-positive direction. The 

maximum value of c for those cases falls in the range 1/2 < k <  1. This means that the retention in the presence of 

Figure 2. Dispersion relation for the mass transfer problem as function of the mass fraction k 

moving forward for different values of the parameter
0

2cr   .  Dashed curve represents 

the limiting case where ε→0. For ε=1the curve reaches a maximum at k=1. 
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very short waves may introduce wave velocities higher than c0 and short waves could catch up long waves inducing 

possibly the formation of shock fronts.     

 The solution of the equations presented above need to be carefully explored. Due to the difference in sign of the 

third order differential term as compared with the KdV equation it is not possible to adopt the solutions already 

available for this last equation (Miura, 1967, Soliman, 2006, Bhatta and Bahtti, 2006, Chunxiong et all) without a 

detailed analysis. While for the linearized KdV equation long waves move faster than short waves for the case of 

propagation with retention short waves are speed dominant moving faster than long waves. Also the fact that the 

dispersion relation has a maximum within the range of valid solutions is a critical difference from the classical case 

of the linearized KdV equation. Figure 3 presents a sketch of the expected results for the dispersion relations for 

propagation with retention and for the linearized KdV. Note that for the KdV equation the relation c/c0 holds only 

for long waves, 16 h while for propagation with retention there is no restriction in principle. The relation c/c0 

is limited below by the correspondent moving fraction k as mentioned before leading to 
0

kcc  for very long waves 

as shown in the Fig.3. Two curves for different fractions ki and kj , i ≠ j,  intercept at 1
0


ji

kkcr for all 

1
ji

kk . Given that 2
ji

kk the locus of intersection of all curves ki falls within the interval 10
0
 cr . 

The dependence of the dispersion relation on λ is substantially different for both cases which indicate that in general 

the respective solutions will probably present quite diverse behavior. For very long waves however asymptotic 

expansion of the respective solutions may present similar behavior. We leave the discussion on the analytical and 

numerical solutions of the equations for mass transfer with retention for a next paper.  

Finally we believe that experimental setups are not difficult to devise introducing appropriated devices that could 

transform linear momentum into angular momentum for some fraction of the particles moving in the positive x-

direction with a minimum of dissipation. Unfortunately we were not able to find references to similar problems in 

the current literature. A recent paper on the behavior of mass transfer among black holes [Holley-Bockelmann et all] 

mention this kind of problem but the approach adopted is quite different from the formulation presented here. 

Another interesting reference dealing with backscattering of ballistic electrons constrained to move in a corrugated 

surface topography [Sotomayor et all] introduces a similar problem that is modeled with quite different equations.   
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Figure 3. Dispersion relation for the linearized KdV equation and for the equation of 

propagation with retention as function of the wave length.    
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 APPENDIX A 

 

One dimensional propagation with retention. 

 

The rule to be followed for this particular case reads: 
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For 10  k . Using the same procedure as before, and performing the tests for the critical values of k, the 

following   results are obtained successively:  
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Now considering the function p(x,t) sufficiently regular we may write:  
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Introduce this expression in (A-2) and rearrange the terms to obtain: 
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Or 
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Clearly for k=0,   01  t
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pp except for terms of higher order, that is, we arrive at a stationary solution matching 

the results obtained with equations (A-1a,b,c). For k=1 the right hand side term reads  2
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the function p(x,t) sufficiently regular we may write:  
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Therefore for k = 1 we have: 
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The left hand side term means variation with respect to t and the right hand side term means variation with respect to 

x. Therefore except for terms of higher order the above expression indicates propagation exactly as required. 

Continuing with the algebraic manipulation we get: 
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      Noting that: 

 

     
   2

3

2

1

4232

2

3

2

1

2

3

2

2

2

1

222

2

22

32

333232









































t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

t

n

ppkxpkp

ppkppppkppkpp
 

 

and introducing this expression in (A-3 ) we get successively: 
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Performing again the test for k we obtain, for k=0,   01  t
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pp   stationary solution as required and for k=1, 
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we get: 
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Again this expression satisfies the conditions required for k=0 and k=1. The differential form is then obtained: 
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