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Abstract. The Method of Fundamental Solutions (MFS) is auttyea popular boundary-type meshless method that h
been applied to solve various engineering probldmserodynamic problems involving slender bodles MFS has
been scarcely applied. In this case the outsideaitons interior to the bodies and so it is diffitolk even impossible
to distribute the FS locations adequately. Boundagsh-based methods experiment excessive humemioes and
convergence difficulties for treating very slentbedy shapes. For plane aerodynamic problems, anyilconformal
mappings may help to overcome or to alleviate thirsevbacks. For potential incompressible flow pehb, the
Laplace equation must be satisfied by both themiatefunction and the stream function. The logamic fundamental
solution corresponds to the potential induced bgoarce in the first case and to the stream funciimuced by a
vortex in the second one. In this work, only peortices are employed in order to represent botiteied and cascade
bodies. For airfoils with cusped trailing edgess@formal mapping is firstly applied in order t@atrsform a profile in
the physical plane in a near-circle. The vortexdrhdFS is then applied in the near-circle planee Tloukowski
mapping is used for isolated airfoils and the Wginiapping for blade cascades. Depending on thermaters of
these transformations, the obtained near-circley mehibit excessive curvature variation by impajrithe accuracy
of the numerical results. To deal with this sitoati a suitable technique was developed for produciear-circles
with a minimum of curvature variation. For smootbdies, like circles or thick ellipses, the vorteasbd MFS can be
applied directly in the physical plane. Variousttewere carried out on isolated circles, ellipsasfoils and blade
cascades in order to verify the influence of thenhar of vortices, their distance from the boundang also the
curvature variation. We concluded that the vortasdd MFS can attain a high degree of accuracy amté can be
used to generate benchmarks for airfoil and casdémle analysis. With suitable adaptations and egiens the MFS
can also be used in the development of reliabléstimw turbomachinery blade design.
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1. INTRODUCTION

For a long time the finite element method and tingef difference method have been the dominant micale
methods. These methods are domain-type methodmirast to boundary-type methods which transfezgtioblem to
the boundary. In general, the domain-type methedsire domains meshing and it becomes extremety Wwhen they
are solving 3D problems. Thereby the boundary efemeethods (BEM) have arisen as alternative tectesicthat
discretize just the boundary which requires low patational cost. However the BEM involves sophéd
mathematics and there are some difficult numefitagrations. Thus meshless methods were develapéath require
neither domain nor boundary meshing. They needdisstretizations via sets of nodes. Related toettmsthods, the
method of fundamental solutions (MFS) has emergedira effective boundary-only meshless method fdvirsp
homogeneous linear partial differential equatidd&S just requires the satisfaction of boundary dmus and the
fundamental solutions have to be known.

The idea of the MFS is to approximate the solutignlinear combining of the fundamental solutionstloé
governing differential operator in such a way tha additional boundary conditions are satisfiedhvaufficient
accuracy. It reduces the problem to an interpatapooblem on the boundary by fitting the data oe Houndary.
Another advantage is that the integration domaim ls& moved outside the domain that contains thgukanities, to
avoid them. In many cases the total error is bodriule the error on the boundary, which can be evetuaasily.
Furthermore, adaptive versions are possible, inttimd) more trial functions to handle places whéelioundary errors
are not acceptable. For smooth problems the MF@&shovery good convergence behavior.

One of the first MFS applications was on poterpiablems, like the study of how the boundary caadg of an
elliptic equation can be approximate by FS (Mathod Johnston, 1977). The FS are used as intempolathctions
and the singularities are located outside the doraad its locations let free to change. Thereforggaly adaptive
method though nonlinear is found which showed tokweell in 3D problems and with boundaries of loantinuity
class. After some time, the MFS was applied foviegl potential flow problems. Dragos (1982) hasdudés method
to determine the FS on the steady linear aerodynaaritext and how to use this solution in ordeddcve the motion
in the presence of bodies. Johnston and Fairweéi®84) have used the MFS to obtain the veloc#idfiof a fluid
flowing past a cylinder between two parallel platg&he authors show the method advantages whichhigtdy
adaptive, the ease to determine the solution hyegtdevaluation process and a very good accutéasageorghis and
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Fairweather (1999) have studied the applicatiothefMFS to axisymmetric potential problems whehais simple FS
(when the boundary conditions and the domain atlke &xisymmetric) and it has arbitrary boundary dtods. It was
showed that the MFS can be applied to any problanhhas known FS and the method is very efficiennbnlinear
problems.

In this work we applied the MFS to solve a potdrftiad flow over a body using vortex points as thiagularities
(FS). This flow was represented by the Laplaceisatiqn of the stream function. An inverse Joukowskipping was
used to obtain a near-circle and then all the tatioims were made in the transformed plane. Sonsenples are
presented in this work, including circles, ellipsggmmetrical and cambered airfoils.

2.MFSBASIC FORMULATION IN THE AERODYNAMIC CONTEXT

As said before, the basic idea of the MFS is tor@gmate the solution of a homogeneous linear baundalue
problem in terms of a superposition of fundamesatdlitions of the governing differential operator,In other words,
the fundamental solutioB(x, y) is a solution of the homogeneous partial difféiedrequation

Lu=0inQ (1)

for all domains which do not contain the singular pojnof G(x, y). If Q c R%, d = 2, 3, is a bounded open nonempty
connected domain with sufficiently regular bounda€y = I andf" is a known function, then the additional boundary
condition

u=f"onl (2)

defines together with (1) a homogeneous Dirichairulary value problem. It can be express in terffdeumann
boundary value problem

a—u=00nl', 3)
on

wheren is a outer unit normal vector.

In the aerodynamic context, the aim of using thithad is to solve a potential flow over a body wh@an be
represented by the velocity potential and sourdetpa@s the singularities in the case of the Neumaeblem, or by
the stream function and vortex points in the césth® Dirichlet problem. Therefore, equations (B), and (3) can be
written as

D?p=0

4
a—¢=0 onl’ “)
on

for Neumann boundary condition, and the fundamestthition is the potential of a source

1
go(z):grln r, (5)

or

{D‘”:O 6)

Y =cteonl’

for Dirichlet boundary condition, and the fundanasblution is the stream function of a vortex

w(z)z—ilnr, (7)

wherez is the location of the singular points in comptmordinates and is the distance between the collocation and
the singular point. We have chosen to use compeiables because of the ease of implementatiorcamgbuting, but
it is also possible to work without a complex folation.

3. INVERSE CONFORMAL MAPPING FOR AIRFOILSAND BLADE CASCADES

In the case of airfoils it is very difficult to late the singularities inside the trailing edge oagiTo avoid that
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drawback which limits the use of the MFS, one opitedse an inverse conformal mapping.
For isolated airfoils/bodies the Joukowski mappimgs chosen. The Weinig mapping was chosen for blade
cascades. The Joukowski mapping is given by

CZ
—r+S 8
z({) [+Z (8)

wherez is the coordinate of a point in the physical plahé the coordinate in the transformed plane arid the
transformation parameter. An explicit equation wasermined for the inverse Joukowski mapping bguating the
roots of Eq. (8) for a given

7(2)=(22VZ-4¢) /2. ©)
One of the roots is inside the circle of raditend the other is outside it, that is
1<(2)|z ¢ (10.a)

|7(z)|<c. (10.b)

An algorithm was developed for specifying the prom®t. Then a near-circle can be obtained forainfpil with a
cusped trailing edge.

As said before, the Weinig mapping was chosen fadé cascades. In this case an inverse mappingne@as
developed. All the computations were done in thadformed plane. When the circle’s center lieshendrigin of the
coordinates § 77) one has a flat plate cascade. Moving this cenyeuding a paramete, one obtains an airfoil
cascade. Here the center of the circle was movbdithe & direction resulting in a symmetric profile cascale the
complex potential based on a flat plate cascade is

F(():%ﬁ@n?igﬂn?jg, (11)

wheret denotes the blade spacing,, is the incident velocityR is the location of the singularities that represahe

flow at e in the physical plane, andRlis the location of the singularities reflectiomside the transformed body.
Considering null incidence, for a given staggerl@gythe mapping function is

z:i(e-‘ﬂ <Ry @ |t/ R]. (12)
o 7-R 7-1/R

During the tests of this method, we have noted thate was an influence of the variation of thevature
deviation along the body contour in the computiogusacy. For instance, computing the error for lipse (without
mapping), one has observed that the error has slyddecreased when the singularities were placegobé the
curvature center of the edges. This behavior shdahedeed to locate the singularities near the dagnwhen one has
a significant variation of the curvature deviatidihus when an inverse conformal mapping techniguapplied it is
important to obtain a near-circle in the transfadnpéane as smooth as possible. To attain this goagptimum value
of thec parameter is determined in order to minimize thvature deviation of the near-circle. An optimiaatroutine
from IMSL FORTRAN library was used.

4. NUMERICAL FORMULATION AND IMPLEMENTATION

In this work one has chosen to use a static imphtatien, in other words, the location of the sirzgilles
(fictitious boundary) is determined a priori. Thenmber of collocation points (points in the bodysuhdary) and the
singular ones were defined to be equal. The algorivas implemented in FORTRAN.

The input parameters are the given body’s boundats: coordinates of the collocation pointsy(, the leading
edge numbenle, and total number of points (even), a distance factdr between the real and fictitious boundaries (to
be defined later), and the angle of attatknd, for cascades, tte and y values. For airfoils and cascades, the
calculations are made in the transformed plane.ntimber of collocation/singular poinitsis equal to half ofin. The
other half is set to be the test points, whereviilae of the stream function is computed in oraeolbtain the error.
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Once given the body’s data a subroutine is calbedoimpute the inverse Joukowski mapping and thenmeation of
the curvature deviation for isolated bodies. Fasceaes, the input parameters are given directiphéntransformed
plane and one can obtain the values in the phypleale using the mapping function. The subroutit®/MIF from
IMSL library was applied to the single variable iapkation. In the numerical implementation, theteys of equations
must be discretized as follow

iajG(x, y)=f(x),1sis N. (13)

=1

In the aerodynamic context, equation (13) becomes

N .

ST~y =, 1<i <N, (14)
j=1

wherel is the vortex density distributiony; is the stream function induced by the singulgriby the collocation point
i, ¢,; is the stream function induced by the uniform e&joon the collocation poirit and theyy, is the constant value
of the stream function on the boundary (boundand@®n). They,,; was decomposed in two parts basedron

il'j(,//ij =x sin(@)-y cos@r #¢, , Ki<N. (15)
j=1

Hence the solution is computed through the supéipoof three linear systems derived from equatibb)

N
zr?e(//ll - _y, fOI’ U00 :l,a:O‘ s andﬂo =, (16)
j=1
N o
Zr?o W, =x, foru, =1,a =90, andy, =, a7
j=1
N
ngjyowij =1, forU, =0, andy, =, (18)

=

whereU,, is the uniform incident velocity. A LU factoring¢hnique was applied using the IMSL subroutine DREB;

which also computes the condition number, and #otofing system was solved using the subroutine SRE. After

that the Kutta condition is imposed by taking theuiting tangential velocity on the trailing edgpial to zero. Thus
one determine the constant value of the streantitmon the collocation points, afdis computed by

r,=cos@Y{ +sint J7 +y, I ,Ej<N. (19)

The velocities on the collocation points and threasn function value on the tests points are congputben the
mean square error, the local error, and the maximor are determined at the end of the algorithm.

5.EXAMPLES

The proposed method was tested for some bodiesdier do analyze its behavior and performance. Diffe
distance factor® were used. The first chosen example was a ciraylémder. Hered was defined as a ratio between
the fictitious boundary radius and the body’s bamdradius. Figure 1l.a shows that the method ptesarhigh
accuracy when the fictitious boundary moves awaynfthe body’s boundary or the number of poMisicreases.

An unstable region appears when the singular pairédocated far away and the number of pointsegmes. As
the number of points grows for somethe condition number raises quickly causing utaiety in the error accuracy.
Figure 1.b shows the possibility of collapsing thueves in order to obtain a reference to chosempiatte parameters
for a given accuracy.

Figure 2 shows that the Kutta condition must bdiagpn order to guarantee a stagnation point atithiling edge
even in the case of null incidence. Otherwise amgtry loss is observed by creating a false numlecicaulation.

Figure 3 shows that the local error distributiotsgenstable as the singular points are moved avealy the body’s
boundary.
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The second body studied was an ellipse. Duringtébts it was noted that the results always divergken the
singular points were located beyond the curvaterder of the edges. This fact indicates that theature variation of
the boundary has strong influence in the accur@oythe distance allowed to locate the singulartpoivas limited to
the curvature radius of the edges. Tliusas defined as the ratio of the distance fromsihgular point close to the
leading edge to the curvature center and the aunwahdius. Figures 4.a and 4.b show a convergeeglcavior similar
to the circular cylinder case.
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Figure 4. Method behavior for an ellipse with aggatio 0.5 in the physical plane.
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Three airfoil profiles under null incidence wereakthosen for testing the developed method: onenggrit airfoil
(NACA 65-010) and two cambered airfoils (NACA 65@nd 65-910). The inverse Joukowski mapping amd th
procedure for minimization of the curvature dewaativere applied (Section 3).
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Figure 5. NACA 65-010 profile and its near-circle.
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Figure 6. Mean square error for NACA 65-010.

Figure 5 shows the NACA 65-010 in the physical amachsformed plane. The results obtained for thisecare
illustrated in Fig. 6. We can notice the high iefice of the curvature variation in the accuracyhasdistance of the
singular points from the boundary increases. I8 ttase, we should keep the singular points nexheobody’s
boundary and just change the number of points litese the required accuracy. For this profidewas not limited to
the smallest curvature radius found on the boundéathe near-circle. Heré has the same definition of the circular

cylinder example.
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Figure 7. a) NACA 65-906 profile and its near-adb) NACA 65-910 profile and its near-circle.
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Figures 7.a and 7.b show the geometry of the caedbairfoils and their corresponding near-circlebie T
minimization of the curvature deviation was alsplaga. Now the parametef was defined as the ratio of the distance
from the singular point close to the convex poiftmaximum curvature to its curvature center and ieimum
curvature radius. Again, we can observe in Fig@&esand 8.b that the accuracy gets worse as tkendés from the
boundary increases at high number of points. Wasth mentioning that the airfoil thickness hasrée@ a significant
influence. The equation system becomes more ilditmmed as the airfoil thickness increases. Ongeoles that the
thicker airfoil (Fig. 7.b) attains a minimum errffor a lower number of points than the thinner airfBig. 7.a).

The proposed method was also applied for a flaeptascade and a symmetric airfoil cascade usig\tainig
mapping. One adopted the blade spatiegual to 1 and null stagger angleSince an inverse mapping is not used, the
transformed body is a circular cylinder, thdss define as the ratio between the fictitious tamy radius and the
body’s boundary radius. The incident flow was repreed by singularities and their reflections iadide transformed
body, ensuring that the body’s boundary is para aftream line (circle theorem). One udesdl,2 andR=2,0 for
singularities location.

Figure 9 shows high accuracy of the computatiox@cted, in the case of a flat plate cascadee,lege incident
flow was represented only by a source at upstraadrassink at downstream of the body and their cgflas inside the

body.
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Figure 9. Method behavior using sources and tiediections aR=1,2. b)R=2,0

Now the incident flow is represented only by a deutlockwise vortex at upstream and a clockwiseeoat
downstream of the body and their reflections indhie body. Figure 10 shows a strong influence aumcy of the
computation, impairing the results when one congpdoethat for the previous case. This behavior shthat a
singularities combination of the MFS might helpstdve the equation system better.
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Figure 10. Method behavior using vortices and theflections aR=1,2. b)R=2,0
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Finally the incident flow is represented by a caucdibckwise vortex and a source at upstream anidckwise
vortex and a sink at downstream of the body anil telections inside the body f. Figure 11 showsirailar behavior
of the proposed method to the case of only vortiepsesenting the incident flow.
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Figure 11. Method behavior using vortices, sousrastheir reflections @&=1,2. b)R=2,0

In the case of symmetric airfoil cascade, the fiansed body was moved ié direction doingu = -0,05. The
symmetric profile obtained in physical plane iswhan Fig. 12.
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Figure 12. Symmetric profile in physical plane for 0,05.
Figure 13 shows that the error gets worse for ytmensetric airfoil cascade. The singularities of theident flow

and the profile thickness had a strong influencéhernaccuracy of the calculus. Nevertheless ofieati obtain a good
precision choosing appropriate values for numbegoirfits andd.
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Figure 13. Method behavior using vortices and sesiand their reflections far=-0,05a)R=1,2. b)R=2,0.
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6. CONCLUSIONS

In this work we presented a technique to applyNt€S for solving potential fluid flows over bodiesdblade
cascades. An inverse conformal mapping was propfisedolated airfoils to eliminate the difficultyf locating the
singularities inside the trailing edge region. Anmiization of the curvature deviation was appliedhte near-circle to
smooth its boundary, improving the accuracy. Facades, the computations were done directly intrdmesformed
plane. The Vortex-Based MFS showed to be easy fdemment and did not require many collocation poiaitsl
singularities to produce accurate results. Furtbeenthis method does not involve costly integratiohthe boundary,
only an evaluation of the approximate solution. Thenerical results demonstrate that the proposetthadeis a
powerful method but it showed to be very sensitivehe curvature variations of the body’'s boundariie more
curvature variation the boundary has, the more ni@icethe results are. For cascades, the repregentd the incident
flow by singularities and profile thickness hadoailsfluenced the accuracy.

In future studies, one can combined different kiofisingularities, such as a doublet in the ceotehe near-circle
with vortex points uniformly distributed to improvbke results. In addiction one can combine vortaed sources as
singularities of the MFS aiming to improve the psen for blade cascades.
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