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Abstract. The main product of the Natural Gas Processing Unit (NGPWUY&d in this work is the liquefied petroleum
gas (LPG). The LPG is ideally formed by propane and butanagver, in practice, this also has in its composition some
contaminants, such as pentane and ethane. The LPG qualityot@ done through its chemical composition, however,
chemical compositions are traditionally known as variabéé difficult measurement. The instruments used to measure
these variables, such as gas chromatographies, are expeastd have long intervals of measurement, what turns difficu
the development of more efficient control strategies. A wagduce this problem is to use secondary process variables
to infer the chemical compositions in shorter time intesvaBystems that perform this task are know in the literature
as inferential sensors or inferential systems. This papesgnts a comparative study of four hybrid inferential eyst.
These systems use the techniques of principal componelysenand artificial neural networks to estimate, in each
minute, the ethane and pentane molar fractions in LPG angbtbpane molar fraction in the residual gas. In this work,

a part of a NGPU process formed by a deethanizer and a delmeéaoolumn is simulated on HYS¥ Software.

Keywords. hybrid inferential system, principal component analysisyral networks, natural gas processing.
1. INTRODUCTION

In natural gas processing units (NGPUSs) the raw natural gasqs through an initial preprocessing stage, where the
water and oxidizing elements are removed. Then the gas tsteetistillation columns, where it is decomposed into
various subproducts such as the residual gas, the natwalirga (C5+) and the liquefied petroleum gas (LPG). The
columns demethanizer, deethanizer, depropanizer andateber are examples of distillations columns that can bado
in NGPUs.

The NGPUs are complex processes and its configurations depethe chemical characteristics of the natural gas
which is being processed and on the production goals of theegsing unit. The real NGPU adopted as the basis of this
work consists of a column deethanizer in series with a delmeacolumn. The main product of the process in study in
this work is the liquefied petroleum gas (LPG). The mentioo@dmns were computationally simulated in HYSYSa
software for chemical processes simulation.

The chemical compositions are rarely used directly as obiett variables in quality control strategies of the sub-
products of a distillation column, because these variadledlifficult to measure. The measurements of these imgortan
indicators of process performance and product quality #enmbtained through sample analysis in laboratoriess Thi
methodology results in large measurement delay, hindéhiaigthe necessary adjustments to maintain the behavibeof t
process according to the desired occur at the right times,T¢me can arrive at a situation where the final product will be
out of specification, causing an unwelcome economic loss.

There are also devices that can measure the compositioysenanh the production line, such as gas chromatographies.
However they are expensive to purchase and maintain, asémrsignificant time intervals between the measurements.
This last feature is the major restriction to implement nmeffecient control strategies in distillation columns preses.

According to Zamprognat al. (2005), the inferential systems, also known as inferesgakors or soft sensors, are an
attractive way to address the problem of measuring the pyiraiables of a process, particularly when physical senso
to measure these variables are not available, or when tlhecbigts and/or technical limitations of these devices preve
its use in real time. In these systems, the primary variadfiéise process are estimated from secondary variables easy t
measure, such as temperatures, pressures, levels, flomsganhers.

In this work, it is presented an analysis of the use of aréfineural networks (ANN) in conjunction with principal
component analysis (PCA) to implement hybrid inferentisdtems. The neural networks are widely used to develop
these systems. Its application to estimate chemical coitiqoos has been reported in different kind of processes (Bo
et al, 2003; Chelleet al, 2006). Likewise, we can also find works in the scientificriitere that present PCA being
applied with artificial intelligence techniques to implemhénferential sensors (Warret al, 2004a,b; Linharest al,
2008).

This paper presents a comparative study of four ways to aoenBCA and ANN techniques. From the analysis of
different configurations, important observations as athges and disadvantages of each system can be made regarding
the combination of these techniques when used to implemésrential sensors. The structures analysed in this wark ar
called PCA-ANN inferential systems.
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The goal of the inferential systems analyzed in this papérs sstimate the molar fractions of contaminants ethane
(C2) and pentane (C5) in LPG and the mole fraction of prop&%) (n the residual gas. The last one represents a loss
indicator of the NGPU taken as basis to develop the simulaieett used in this work. The inference of these variables is
performed every minute by a multilayer perceptron (MLP)naénetwork. The PCA is applied to reduce the number of
inputs of the ANN without loss of information and performanceducing the network complexity.

2. PROCESS SIMULATION

Some important stages of a NGPU were simulated using the F5¥S¥oftware to analyse the four PCA-ANN in-
ferential systems proposed. The process simulation wakimgnted based on a real NGPU formed by a deethanizer
column in series with a debutanizer column. After an initeahoval process of water and oxidants from the natural gas it
is forwarded to these fractional distillation columns wéhére main products of the process are extracted.

The deetanizer is the first column of the process simulattarceives the preprocessed natural gas and by distillatio
gets on its top the residual gas, consisting mainly of metleand ethane. The main product of this column, the liquid
natural gas (LNG), feeds the next simulation stage: the tdeimer column. In this last step are extracted the natural
gasoline and LPG, respectively, the botton and top procafdtse debutanizer column.

Figure 1 ilustrates the schematic diagrams of the deetbaard debutanizer columns as well the PID controllers and
others instruments on process simulation.
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(a) Simulated deethanizer column. (b) Simulated debutanizer column.

Figure 1. Schematic diagram of the process simulation in AS®.

The LPG is the most important economic product of the NGPEras basis of the process simulation, being com-
pounded ideally by propane and butane. However, in pradhliegoroducted LPG has some contaminats in its composition
as ethane and pentane. These contaminants must be cahtoattaintain the final LPG composition according to quality
specification laws and to ensure higher production profit¢his work the inferential systems in study estimate thamth
and pentane molar fractions in LPG as well the estimatedgmemolar fraction in residual gas. The reduction of C3 loss
in residual gas results in a C3 concentration increasindi@ LAs consequence of it the debutanizer column will present
as its final product a LPG richer in C3.

3. INFERENTIAL NEURAL MODEL

An inferential system has to adequately represent the dignatationships between secondary variables used by the
system and the primary variables adopted to be estimateacHieve this goal, it is necessary that the system desaibes
dynamic model that represents these relationships wittisfaztory level of accuracy.

In this way, performing inference using ANN can be seen asdentification problem, since the neural network
applied have to be able to effectively represent the dynsimtween the secondary and primary variables of the process
under study. One of the main advantages of using neuraltstascfor identification and/or for inference is its ability
represent even the nonlinear dynamics based only on expetaimmeasured data.

The identification procedure requires an initial model ctiite selection to be used. In the family of neural net-
works multilayer perceptron (MLP), the identification méxdmost used are NNFIR, NNARX, NNARMAX, NNOE and
NNSSIF, all of them are based on its respective traditianablr model structures. More details about these models can
be found in Ngrgaardt al. (2001).
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Figure 2. NNARX model structure.

The model used as the basis for the inferential systems peapim this work is the model NNARX (Neural Net-
work AutoRegressive with eXogenous inputs). Figure 2 shawgeneral, this structure, where ANN is the multilayer
perceptronp andm are, respectively, the regressors applied to the in@arnd outputy andd the transport delay.

4. PRINCIPAL COMPONENT ANALYSIS

According to Salahshoagt al. (2009), PCA is a useful statistical technique that has foaplication in different
fields to find latent patterns in high dimensional data. Itvgag of identifying patterns in data, and expressing the bfata
such a way as to highlight their similarities and differesice

The PCA aims to map a system made upaorrelated variables into uncorrelated linear combimetio (k < p),
called principal components. Jolliffe (2002) affirms tHa PCA main idea is to reduce the dimensionality of a data set
formed by correlated variables, keeping as much as possiltie variance of the original data set.

The k principal components that represent the original dataystés can be obtained using the covariance or corre-
lation matrixes. The decision on which matrix to use is uguabhde according to the discrepancy caused by the different
measurement units of the original variables (Mingoti, 2005

Considering the use of the correlation matrix, the PCA dattans can be summarized by the following steps
(Salahshooet al., 2009):

e Step I Get the experimental dafd = (X; X, ... X,)".
e Step 2 Normalize the random variables,, X, ..., X, to zero mean and unit variance.
e Step 3 Calculate the correlation matri

e Step 4 Calculate the eigenvectors, es, ..., e, and the respective eigenvalues X, ..., A, of the correlation
matrix. The coefficients of the j-th main component are tleeneints of the eigenvectey as demonstrated in Eq. 1,
while the eigenvalue ; represents the variance of this component.

e Step 5 Sort and choose the appropriate principal componentsiifigra feature vector. In general, once eigenvec-
tors are found from the correlation matrix, the next stemisdrt them from highest to lowest eigenvalues. This
gives the components in order of significance. Now, it is fiidsdo ignore the components of lesser significance.

e Step 6: Derive the new data set. This is the final step in PCA transhtion. Once the significant components that
are going to be kept in the data are selected and hence thedeaictor is formed, it is simply needed to take the
transpose of the vector and multiply it by the original data s

The k linear combinations (principal components) chosen toasgnmt the original data s&t are directly related to
the total variance of the system, being chosen accordirfteteigenvalued;, Aq, ..., A,. Sinceey, e, ..., e, are the
normalized eigenvectors, theth principal component (PC) is defined by:

/Y\}:ele1+€j2X2+...+€ijp (1)

The PCs are sorted in descending order according to theangas, or sorted from highest to lowest eigenvalues.
Jolliffe (2002) says that many of the selection rules usefintb the numbef: of principal components are not strictly
accurate. A widely used criterion is to select a number of mamentsk which together represent a percentagef the
total variance of the problem. Thus, it seeks the smallésger value of such that satisfies:

i=1 > ~ (2)

According to Jolliffe (2002); corresponds to a cutoff point and is usually selected froeg#on betweemr0% and
95%, depending on the application characteristics and reaugngs.
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5. PCA-ANN HYBRID INFERENTIAL SYSTEMS

The quality control in chemical industries requires the lienpentation of monitoring networks using high cost online
measurement devices and, when possible, appropriatedsitbdeproduce real time estimates of unmeasured variables
on the basis of measurement data available (Foretiad, 2007). The inferential systems fall in these latter case.

The inferential systems analyzed in this paper combine tiR And PCA features. These systems differs in the way
these techniques are applied to the available process Tta¢agoal of the proposed inferential sensors is to estinmate i
every minute the ethane and pentane molar fractions in LB@gd as the propane molar fraction in residual gas. In this
way, these information about chemical compositions arsidened to our study the primary process variables (VP).

A common practice is to use temperatures of the distillat@omns trays to estimate the chemical composition of its
main products. However, due to a lack of temperature sesdise trays of the columns in the process taken as the basis
of this work, all PID process variables that somehow affaetprimary variables dynamics were chosen as secondary
variables of all proposed inferential systems. These stamgrvariables (VS) adopted are listed in Table 1 along with
their respective PID controller and in which column they alogained.

Table 1. Chosen secondary variables.

Secondary variable (VS) Column PID Controller
Top pressure Deethanizer PI1C-100
Reflux flow Deethanizer FIC-100
Tray 40 temperature Deethanizer TIC-100
Output flow Deethanizer FIC-101

Tray 16 temperature Debutanizer TIC-102-2
Tray 28 liquid volume Debutanizer LIC-102-2
Reflux flow Debutanizer FIC-101-2
Condensated level Debutanizer LIC-100-2

[e ] IENININGINNNIN IR Aol

The number of selected secondary variables and the presésoae of their past values in the identification model
NNARX turns the neural network inputs number of the PCA-ANNistures relatively high. To reduce this number the
statistical tool principal component analysis is appliétie goal is to reduce the complexity of the inferential syste
without impair the quality of the estimates of the primaryiahles.

Figure 3 shows the schematics diagrams of the four inferkesyistems analysed in this work. In shade, it is possible
to note the part of the systems configuration that resemieSINARX identification model. Didactically, we can divide
each system in a PCA module and an ANN module.
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Figure 3. Schematic diagrams of the PCA-ANN hybrid infeiargystems.
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The inferential system PCA-ANN 1 is composed of a PCA modiida has as its inputs past values of primary and
secondary variables. Thus, the goal is to minimize the cerifyl of the ANN module. Depending on the quality of the
inference performed, this configuration allows the systerha used or tested with high order models, since the ANN
module input is formed only by thie principal components selected.

In the inferential system PCA-ANN 2, as well as in the pregistructure, the goal is to achieche a high reduction of the
ANN module complexity. However, with this structure it'sgsible to perform an analysis of the PCA module associative
capacity. As illustrated in Figure 3, the inferential systBCA-ANN 2 is composed by two distinct PCA modules. The
PCA module at the top of the diagram is responsible for fitggthe information of the secondary variables, while the
module at the bottom filters the primary variables inforimiadi

The inferential structure PCA-ANN 3 was designed with thra af analysing the importance of the primary variables
past values information for the ANN module. Thus, this ief#ial system is formed by a single PCA module that has in
its inputs secondary variables past values. Compared éthrevious structure, the PCA module responsible forifiiger
information related to the primary variables was removetk past values of these variables are used directly as inputs
the neural network, turning the ANN module complexity lartigan in the first two structures.

The ANN module of the inferential system PCA-ANN 4 is the ohattmost closely matches the NNARX model.
The cited module receives as inputs the past values of theipal components extracted from secondary variables and
the past values of the primary variables. The PCA module isfittierential structure only reduces the information of
the current secondary variables values, not more theiryadgsés. The NNARX model used in this system, in theory,
causes a better assimilation of the dynamics between thrapriand secondary variables from the network, reducing the
estimation error. On the other hand, the complexity of theNAmNodule will significantly increase in relation to the other
structures analysed in this comparative study.

6. SIMULATION RESULTS

Firstly, it's important to choose and define some criterigtaluate the proposed hybrid inferential systems. The
comparison of these structures will be held regarding th& Rodule complexity reduction ability, the neural network
structure and the reliability of the primary variables nefiece. These criteria will be analysed, respectively, aling to
the following: reduction ratef,.), number of neural network synaptic connectioNs) and mean squared error (MSE).
There is a relationship betwed®). and N,., since the greater the reduction of the ANN inputs providgdhe PCA
module, the lower the number of ANN synaptic connections.

The reduction rate is used as a way to compare the efficienttyedPCA modules regarding their reduction ability.
According to the previously presented inferential strueslit’s possible to define the reduction rate from the mocgio
and the number of inputs and outputs (principal compon@ft8ICA modules as:

ok
(Vs +V3)

In Eq. 3,k is the number of principal componentsthe model order antf; andV,, are the numbers of secondary and
primary variables, respectively, that made up the PCA neahgut.

The first practical step to develop the proposed inferesyisiems is to collect experimental samples of the simulated
process. The goal is to use the data set obtained to selquritiegal components and identify the dynamical relatiops
between primary and secondary variables.

The experimental data were collected by applying PRS (RsBashdom Signal) signals on the set points of the PID
controllers related to the selected secondary variabéesTab. 1). With this procedure, it was possible to providenges
in the process variables (PVs) of these controllers andsemurently, in the mole fractions of propane in the residaal g
and of ethane and pentane in LPG. Applying this methodologgt af 3,000 training samples and five other small sets of
400 validation samples were obtained.

Table 2 presents a brief summary of the principal componamadysis performed for each inferential systems pro-
posed. The data set of 3,000 samples was used to obtain #mgtsr For each of proposed structure is presented the
cut-off limit ~, the model order, the principal components numbefoutputs of the PCA modules), the number of PCA
modules inputs »n(V; + V},) - and the reduction rate.

The inferential system PCA-ANN 2 has two PCA modules, so erfolirth column of Table 2 are given two values:
the first related to the PCA module that adresses the secovaldables data, and the other to the PCA module that treats
the primary variables data.

The PCA-ANN 4 is a special case when talking about the modkgdrosince the regressors are applied to the selected
principal components and not to the secondary variable®apdmary variabels. The input of this structure is cormgabs
of the immediate past values of the secondary variables,itlisiconsidered the “model” formed by a “first order” PCA
module @ = 1).

From the presented, it is clear that with the increasing eftiodel order the reduction efficiency of the module PCA
also increases, resulting in a decreasing of the ANN modwuda®plexity. It can also be noted that the selected principal

R, =1 3
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Table 2. PCA modules comparison.

PCA-ANN vy n k n(Vs + V) R,
4 10 44 0,77
1 95% | 3 9 33 0,73
2 9 22 0,59
41 9e3 32e12 0,72e0,75
2 95% | 3 | 8e3 24e9 0,67 e 0,67
21 7e3 16e6 0,56 e 0,50
4 8 32 0,75
3 95% | 3 8 24 0,67
2 7 16 0,56
95% | 1 7 8 0,12
4 84% | 1 5 8 0,37
5% | 1 4 8 0,50

component numbers for the first three structures, desmatenibdel order under study, are almost the same. This is an
indication that the use of high model orders to represenptbeess dynamics are unnecessary.

Initially, the v was set at 95%, with the aim of extracting a large amount afrin&tion of the original data. With this
cutoff value was possible to obtain a good data reductiothi@first three PCA-ANN inferential systems. However, this
not happened with the fourth structure. Due to this reasmny value was reduced to 75 % on the PCA-ANN 4 structure.

In this work, the training algorithm used was the scaledugaie gradient. In conjunction with this algorithm, we used
the early stopping techinique to avoid overfitting or ovatisy. The ANN training were performed using the MATLAB
neural network toolbox.

Since there isn’t a technique to define with precision the lmemof neurons and layers a network must have to better
solve a problem, several neural networks were trained fdrbnea single hidden layer and having different neurons
numbers. In this way the number of hidden layers was fixed @sndumber of neurons was defined in a trial and error
procedure. We adopted neurons with sigmoid functions irhtdden layer and linear activation functions to the three
output neurons of the networks.

After making the proper adjustment of the training data atiog to each of inferential systems proposed the training
procedure was realized. Then the validation data sets wesepted to the trained networks. The Table 3 presents the
validation results of the best ANN found for each of infefaintystem under study. In this table are presented therayste
order (), the number of hidden neuron®d’{,,), the validation mean squared error and average percestoalof ethane
(Ee:), propane £,,) and pentanek,) molar fractions. The value in parenthesis is the cutoffiposed with the principal
component analysis. It is important to note that the outpfithese ANNs are the outputs of the inferential systems
proposed, therefore, the results presented in Table 3 daetithe results of each of the proposed inferential systems

Table 3. ANN validation results.

System Nun MSE Fei | Epr | Epe
20 | 2,67e-08| -0,00 | 0,07 | 0,06
NNARX 40 | 1,67e-08| 0,02 | 0,06 | -0,05

46 | 1,38e-08| -0,02 | 0,08 | 0,03
10 | 7,00e-06| -1,51| 0,32 | -1,15
15 | 8,40e-06| -1,66 | 0,55 | -0,06
10 | 3,01e-06| -0,39 | 0,84 | 0,24
15 | 2,69e-06| -0,32 | 0,80 | 0,93
12 | 2,25e-06| -0,56 | 0,58 | 0,56
16 | 1,49e-06| -0,07 | 0,35 | 0,43
16 | 5,98e-08| -0,07 | 0,01 | -0,05
22 | 3,65e-08| 0,00 | 0,06 | 0,02
20 | 2,98e-08| -0,02 | 0,04 | -0,07
28 | 1,91e-08| 0,01 | 0,03 | -0,08
24 | 3,32e-08| -0,01| 0,02 | -0,01

PCA-ANN 1 (95%)

PCA-ANN 2 (95%)

PCA-ANN 3 (95%)

PCA-ANN 4 (84%)
PCA-ANN 4 (75%)

ININ BINFRIEN] FNERIEN] BNEFRIEN] BNFRIEN] B

Table 3 also presents the results of an inferential systesmcban a NNARX identification model. From the designing
processes of the NNARX system and the PCA-ANN systems 1, Bavaks possible to note that the best representations
of the process dynamics were obtained by fourth order mod@els to this only the fourth order models were used with
the inferential system PCA-ANN 4.
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Table 4 shows a summary of the characteristics of the beghfouder inferential systems obtained and presented in
Tab. 3. To ensure the credulity of the comparison of the imgitime 7;, the training sessions were performed on the
same computer whith the same processing conditions. Iniehis .V, is the number of inputs of the ANN module.

From Tabs. 3 and 4 note that all PCA-ANN provided a reductibthe neural network when compared with the
NNARX inferential system.

Table 4. ANN characteristicsi(= 4).

System k Ng | Npn | N T: (S)

NNARX 0 44 | 46 | 2162 | 106.80
PCA-ANN 1 (95%) | 10 10 10 130 9.70
PCA-ANN 2 (95%) | 9e 3| 12 12 150 | 13.03
PCA-ANN 3 (95%) | 8 20 20 460 | 28.80
PCA-ANN 4 (84%) | 5 32 28 980 | 60.96
PCA-ANN 4 (75%) | 4 28 24 744 | 42.88

The neural networks of the PCA-ANN 1 and 2 are much less compian the networks of the others inferential
structures. However the estimates provided by these sgsieamnot considered satisfactory. The best estimatioftsesu
were obtained by the structures PCA-ANN 3 and 4. The perfoomaf these systems was very close to the NNARX
inferential system.

Drawing a comparison between the PCA-ANN systems 3 and 4gitansider only the MSE shown in Table 3,
we can note that the structure PCA-ANNA4 £ 84%) has a slightly better performance. However, the goal isro fi
an inferential structure that combines efficiency with dinify, the ANN module complexity must be also taken into
account.

The PCA-ANN 4 ¢ = 85%) structure has 60% higher number of inputs at its neural otthan the PCA-ANN 3
structure. Another note is that the PCA-ANN4 £ 85%) has 40% higher number of neurons in its hidden layer than
the PCA-ANN 3. As a result of these, the fourth hybrid infei@rsystem proposed had an increasing of 113.04% in the
synaptic connections number and consequently a supeginirtg time (111.67%) when compared with the third strustur
Thus, the difference between these structures lies in theibers of synaptic connections, since their performanee a
similar. Due to its lower complexity the inferential syst®@A-ANN 3 was selected as the best structure of this study.

To confirm the functionality of the inferential system sédgtit was attached to the simulated system formed by the
deethanizer and debutanizer columns. The goal is to vaelithat system comparing the primary variables mole fractions
provided by simulation and by the inferential system PCAMBIin real time. In this validation process, we chose to
change the set points of the temperature TIC-100 and TIG210@cated, respectively, in deethanizer and debutanizer
columns. These procedure can be considered as a routiregiopehat can be performed either by human operators, as for
any control strategy, since these controllers affectsctlyr@r the entire process work. Figs. 4—-6 shows the compasis
between the estimated primary variables and the primaigbias provided by the HYSY® software.

0.75 4.00
simulated

0.70 4 estimated - 3.00 4
< 065 A ~ 200
S S
& 0.60 - 5 1.00 A
3 5
£ 055 A c  0.00 A
= S
(_5 =3
g 050 4 S -1.00
® E
O 045 P\ -2.00 -

040 { -3.00 1

0.35 ‘ ‘ ‘ ‘ ‘ ‘ ‘ -4.00 ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
samples samples
(a) Estimated propane. (b) Estimative error - propane.

Figure 4. Validation of the structure PCA-ANN 8 & 4 e N,,, = 20) - Propane estimation.
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Figure 6. Validation of the structure PCA-ANN 8 & 4 e Np,,, = 20) - Pentane estimation.

Analysing the validation results illustrated in Figs. 4when abrupt changes occur in primary variables the estimat-
ing errors become larger as expected. However, the seledtréntial structure (fourth order PCA-ANN 3) is able to
represent with efficiency the dynamics of the simulated @ssc The estimating errors do not exceed 4% for propane,
2.5% for ethane and 3% for pentane, while the module of thewpeecentage errors for mole fractions of propane in the
residual gas and ethane and pentane in LPG are, respediai39o, 0.28% and 0.37%.

7. CONCLUSION

According to the results presented, it was noted that thietsires of the inferential systems PCA-ANN 1 and 2 didn't
had a satisfactory performance when compared with the sthectures in study, including even a NNARX inferential
system. On the other hand, the systems PCA-ANN 3 and 4 weeg@lplroperly estimate the molar fractions of ethane
and pentane in LPG and the propane molar in the residual gas.

Looking at the schematic diagrams of the structures stuidiebis work, we can conclude that the PCA modules
perform well its complexity reduction function. However @ha PCA module filters the primary variables information, it
adversely affects the neural network performance. Thezefo the compared inferential systems, it is necessatythiea
primary variables information is used directly at the nénmwork inputs of the ANN modules to achieve a satisfactory
performance.

The structures PCA-ANN 3 and 4 had similar performances émgk®f the NNARX inferential system. The best
results of these hybrid structures were achieved whentfauder models were used. In this condition, it was seen lieat t
PCA-ANN 3 is less complex. So it was the structure selectdmbtevaluated in real time. The validation of this structure
was realized attaching it to the simulated process and coadiits efficiency.

In this particular process study case it's important to rioé the real values of the primary variables are not always
available at the input of the inferential systems. So, ina epplication in a NGPU, the estimated values of these
variables can be used to compensate this lack. Over the titeajse of these estimates lead to an “accumulation” of
estimation errors that can deteriorate the performancheoiriferential system. A next step of this work is to develop,
from measurements of gas chromatographs, an online meaitzaijitst the PCA-ANN system to reduce the negative effect
of using the primary variables estimated values. Thus, famimg the quality of the estimates, it becomes possible to
implement control techniques to improve the quality camfdNGPUs products, in practice.
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