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Abstract. This work proposes the design, implementation pedormance evaluation of a fuzzy controller for pH
regulation in a stirred-tank reactor. The contralles designed to perform pH neutralization of inttisd plants,
mainly in units found in oil refineries where isosigly required to mitigate uncertainties and noelarities. Classic
PID (proportional-integral-derivative) controllergsre the most popular control system present in striml plants
although they are not suitable for applicationsnan-linear systems. On the other hand, fuzzy lpgiperly deals
with system non-linearities and uncertainties wheceur frequent changes at the operation point disturbances.
On account of their low complexity, the fuzzy coligr requires little computational effort and méag applied to
commercial solutions based on microprocessors, aomntrollers and PLC with good performance. In digdah, it
adjusts the changes in pH regulating process, amgi@r reducing the need for re-tuning to maintdire desired
performance. The system is developed in Simulink/&&® software. It emulates a real plant througle tise of the
fuzzy inference toolbox of this software. The tssate presented and lead to conclude that theyfggstem is
apropriated to systems with non-linear charactéestike pH regulation in oil process.

Keywords: fuzzy control, nonlinearity, pH process control,rifaerstein model
1. INTRODUCTION

Control systems are fundamental for satisfactorjopmance of industrial processes. For instanagyletion ofpH
has an important role in the chemical industrytipalarly in the petrochemical one. Its main comcirto increase the
efficiency of chemical reactions while reducing Bommental impact (Wast al.,2006).

However,pH control is challenging due to its nonlinearitiehigh interfere with gain adjustment of the process
(vale et al, 2008). Besides, sensors and actuators appliéddinstrial plants are devices which contribute hwit
nonlinearities such as dead-zones, hysteresis acidash.

In order to overcome this issue, several lineaitrobechniques have been used in nonlinear pléGtsier and
Pelletier, 1996; Maia and Resende, 1998; Aralj@22®Barradoet al, 2003; Fonseca, 2005; Soto, 2006; Cavalcanti,
2008). PID controllers are the most popular comiaérgolution applied in the industry (Wang, 200ia22i and
Visioli, 2002; Chen and Seborg, 2003; Astréom anddiidnd, 2004). Nevertheless, its use is more adedaan specific
operation range of a plant linearized model. Whenehanges or perturbations lead the process t& watr of its
operating point, manual adjustment of PID contrgliarameters is required. Several approaches hearme ffiroposed to
treat this issue such as adaptive linear, scheglydhedictive, scheduling PI, automatic tuning aotesluling gain,
neural networks, among others (Gustafsson, 1995;dtaal., 1995; Palancaet al., 1996; Klatt and Engell, 1996;
Fonteset al, 2008). Despite this, such control structures masent considerable overshoot or response timaland
not achieve system specifications. This mattelsis present ipH control.

Reznik (2000) has suggested the utilization of yukmgic for online tuning of PID gain. Fuzzy contrdeals
properly with nonlinearities and uncertainties presn plant dynamics (Michaet al, 1994). Moreover, fuzzy systems
are able to regulate controller parameters not arbyind operating point but also in the transistate. Fuzzy-in-line
(Parekhet al, 1994), model based fuzzy (Kelkar and Postlethvi®i®4), predictive fuzzy (Chet al.,1999), fuzzy-PI
control (Fuenteet al, 2002) and fuzzy-PID (Ghest al.,2002) are some of the techniques proposed.

This paper will present a fuzzy-Pl with a wide agigrg range to control paH neutralization plant of the oil
industry. Simulations were held using Simulink/N#t® programming language. The utilized simulatioodel was
the simplified model by Hammerstein. Comparisonsd amlidations with previously used Pl and schedylipl
controllers will be presented.
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2.THE pH NEUTRALIZATION PROCESS

The pH neutralization process is performed by controllthg addition of acid and base flows in a contirsuiou
stirred-tank reactor (CSTR). The mixture of these elements is done by the stirrer and the valhestape determines
the amount of acid to be added the tank. A semssmglled in the process tank, is responsible tedeH level (Fontes
et al, 2008). Figure 1 shows tip# plant structure.

Acid : , control
Base 3: system

———————

Selutio with
pH Controlled

Figure 1.pH process structure in Va&t al.(2010)
2.1. Modeling of pH process

ThepH process simulation was based on the Hammersteilelnehere the static non-linearity precedes ttstesy
dynamic. The tank level control was disregarded.h@iwe a greater similarity with a real processe®sal tools in
industrial processes were added to the simulateckegs, besides the Hammerstein model: the acttlagosensor and a
Fuzzy-PI controller. Figure 2 shows the block déagrof simulated process.
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Figure 2. Block diagram of simulated proc¥sde et al. (2010)

e Fuzzy-PI controller (“C”): responsible for the ptasontrol signal generation, which has the taskpen or to
close the valve;
e Actuator (“A"): the valve is composed by a dead-earn-linearity, and a transfer function to repnégbe
valve dynamic;
e Static nonlinearity (“N.L."): detailed in the Equmt (1);
» Dynamics Plant (“D.P."”): Represented by a firstesrttansfer function showed in Equation (2);
» Sensor (“S"): Represented by a first order tranfaction (Equation4) and a normalization in thepo. This
normalization makes the value process output todieeen 0 and 100% (equivalent to the range ofl@t{zH).
The Static nonlinearity has a nonlinear static gaiseries with a linear function which represehtsoverall system
dynamics. Equation (1) shows the static nonlingasihich represents an industrial process (\&lel, 2010). The
variableu ranges from 0 to 100%.

y = 7 0.02u-1 +1 (1)

0.1+0.9(0.02u-13

The linear transfer function in for thpdd plant dynamics is showed in Eq. (2).

Gy(9)=

)

200s+1
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In addition, modeling of the system sensor andaotuvas provided in order to have a faithful diggon of the
pH plant. The elements adopted were according tartbdel developed by Valet al. (2010). Equation (3) is the
transfer function (TF) of the actuator/valve witdead-zone to simulate its nonlinearity.

GA(9= 5 3)

A first order transfer function represents the semtynamics whose output is thél value, as in Eq. (4). Its time
constant is 10 s and the gain is 1.

1
10s+1 (4)

Gs(9)=

In order to have a visual identification il level, the sensor output was normalized to displlyes from 0% to
100%. This maximum value is reached wipéhis equal to 14 (Valet al, 2010).
With the intention to replicate the plant dynamit® more accurate model, a block representinglyimamics of a

disturbance was added to the system output. I&s tomstant is higher than the plant one. The tearfehction used to
characterize it is in Eq. 5.

1
Gy(9)= 1200s+1 ®)
2.2. Simulation model of a pH Control Process

The model used to implement the fuzzy controlles vdeveloped as part of the activities of a projeatned
REDICONT (Design and Implementation of Regulatorgn@ollers in Nonlinear Processes Used in the Raino
Industry) Fontegt al (2008).

The complete system showed in Figure 3 consistshef following blocks: Reference Generator, Fuzzy-PlI
Controller, Valve Actuator, relationship of openseand manipulated variable (OP_MV), Simplified RlaBensor,
Normalization and Disturbance Model. At the bottoimthe simulation files there are three blocks ttisplay the
results of performance evaluation metrics.
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Figure 3. Simulink diagram for regulation systenpbif
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3. THE PROPOSED FUZZY CONTROLLER

With the aim of compensating system nonlinearitteg, use of fuzzy controllers might be a propeutoh to
control nonlinear industrial plants. This work posps a fuzzy-PI system to control fiteé process, described earlier.

The controller structure has a feedback loop ameéethnputs: error, error variation and the measuynidd The
fuzzy-PI output is the control signal to operate #ttuator/valve of acid flow. The block diagramtleé controller is
showed in Figure 4.

H
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Delta_u

delta_u and u
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Figure 4. Simulink diagram of the fuzzy-PI conteoll
3.1 Fuzzy variables and inference system
The input fuzzy variablesrror (Err) anderror variation (VarEr) have trapezoid membership functions named
ErrZero andVarErrZero. The inputpH has nine triangular membership functions napietd, ph20, ph30, ph40, ph50,
ph60, ph70, ph80 and ph9bhe parameters of these inputs variables are ethawTable 1.

Table 1. Inputs Fuzzy Variables

Variable Type Parameters
Err Trapezoid| [-102 -100 100 102]

VarErr | Trapezoid| [-1.8-0.30.31.8]
ph1l0 | Triangular [-90 10 20]
ph20 | Triangular [10 20 30]
ph30 | Triangular [20 30 40]
ph40 | Triangular [30 40 50]
ph50 | Triangular [40 50 60]
ph60 | Triangular [50 60 70]
ph70 | Triangular [60 70 80]
ph80 | Triangular [70 80 90]
ph90 | Triangular [80 90 150]

The initial gains of the plant in closed loop fach membership function output (parameters) wesegded based
on Fonteset al (2008). The outpufoutputl)has 09 linear membership functions namp&D to pi90 as showed in
Table 2. The used inference model was Takagi-Sutgefaxilitate computational implementation.

The linear Sugeno functions were:

Delta_y=p, -Err+q;-VarErr+r; pH+s; (6)
Where:

Delta_y — Fuzzy-P!I output variable inferred by tfeSugeno linear function;

p,,q,r ands - Parameters of'iSugeno linear function of the Fuzzy-PI;

Err, VarErr,and pH - Fuzzy-Pl input variables.
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Table 2. Parameters of Output Membership functions

Membership Functior] Parameters
pil0 [0.01552.50 0]
pi20 [0.00751.286 00
pi30 [0.0056 0.898 0 0
pi40 [0.00520.74500
pi50 [0.0038 0.7 0 0]
pi60 [0.0041 0.74800
pi70 [0.005 0.902 0 0]
pi80 [0.00731.33300
pi9n [0.01522.759 00

The rule base of Fuzzy Inference System-FIS is asep of 09 rules to describe pBl set points. These rules are
showed in Table 3.

Table 3. Rules of FIS

If (Err is ErrZero) and YarErr is VarErrZerg) and oH is ph50 then putputlis pi50) (1)
If (Err is ErrZero) and YarErr is VarErrZerg) and oH is ph10 then putputlis pil0) (1)
If (Err is ErrZero) and YarErr is VarErrZerg) and oH is ph20 then putputlis pi20) (1)
If (Err is ErrZero) and YarErr is VarErrZerg) and oH is ph30 then putputlis pi30) (1)
If (Err is ErrZero) and YarErr is VarErrZero) and oH is ph40 then putputlis pi40) (1)
If (Err is ErrZero) and YarErr is VarErrZero) and pH is ph60 then putputlis pi60) (1)
If (Err is ErrZero) and YarErr is VarErrZerg) and oH is ph70 then putputlis pi70) (1)
If (Err is ErrZero) and YarErr is VarErrZerg) and oH is ph80 then putputlis pi80) (1)
If (Err is ErrZero) and YarErr is VarErrZerg) and oH is ph90 then putputlis pi90) (1)

4. RESULTS

Presented results in this article have the foll@gharacteristics:
»  Simulation time: 22000 seconds;
e Sequence of references: 50, 60, 70, 80, 90, 5BAUR0, 10 and 50%;
» For each reference, it was used 2000 seconds;
* Overshoots and undershoots smaller than 5%.
Some simulation tests were accomplished with difierapproaches to verify controller behavior whaeeti to
variations of its operating point according to ttveform function.
The three controllers designed for the simplifieddel of the process control @H were simulated in the
Simulink/Matlab®.
Figures 5, 6 and 7 shows the system response @fithences ranging from 10 to 90%. Following eaghr, the
respective control signals are showed.
Figure 5 shows the reference signal output frompla@t and efforts to control the system when wssduthe
algorithm of the PI. It is observed that for opamtpoint values greater than 70%, the system respdecomes
slower. This is caused mainly by the decremenhefstatic gain of the process.
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Reference and output of PI Controller
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Figure 5. Response of PI controller

With the algorithm of the scheduling of Pl conteslbains the output of the plant was able to tthekreference in
a shorter time in the operating point greater th@%. The reference signal output from the plant efifiits to control

the system of this controller can be seen in Figure

Reference and output of Schedule-PI Controller
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Figure 6. Response of Schedule-PI controller

Figure 7 shows the response and control effort sfjsiem when used the Fuzzy-Pl controller. Whenshaots
and undershoots occurred in the plant responsgswieee smaller than 5% and in most operation poémes more
satisfactory than those shown in the two previaugrollers. The effort of this controller is high@rsome references,
but as it is an oil plant where power is availdblethis control and the cost/benefit ratio becomey low.

Additional Membership Functions can be used in inpariableserror (Err) and error variation (Varkrp to
generate new results that reduce the control effoiriimize the overshoots, undershoots and to qihesimeters like

response time.
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Reference and output of PI-Fuzzy Controller
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Figure 7. Response of Fuzzy-PI controller
4.1 Evaluation of controller performance

Evaluation of control algorithms was performed gsihree metrics: integral of absolute error (IAEYegral of
the absolute value of the error-weighted time (IA&Bd using three metrics that were used in Godatta. (1991).
The values obtained in these metrics can be foann@bles 4, 5 and 6 in order to compare the perdoga of the
controllers.

The values in Table 4 are relative to the metri&lAn this metric values of Fuzzy-PI controller dretter in all
references (set points) than the Pl and Schedutex®ttollers.

Table 4. Performance metrics for the IAE

Set Point Pl Schedule-RlI  Fuzzy-
50 - 60%| 524.37 521.48 172.6
60 - 70%| 333.54 343.73 124.3
70 - 80%| 343.48 325.94 124.14
80 - 90%| 342.08 293.32 163.8
90 - 50%| 1881.85 1589.40 857.9
50 - 40%| 277.91 272.35 111.44
40 - 30%| 293.88 282.49 118.0
30 -20%| 313.16 287.92 124.4
20 - 10%| 355.36 276.83 137.1
10 - 50%| 1755.74 1545.20 749.3

== OO 0orfto+=00T7]

Table 5 shows the results obtained with the mafr&E. Fuzzy-PI controller also generated bettemuhessthan
the Pl and Schedule-Pl in all references (set phint

Table 5. Performance metrics for the ITAE

Set Point Pl Schedule-RI
50 -60%| 19627.0¢ 21039.49
60 - 70%| 19001.6¢ 30525.81
70 - 80%| 20021.9( 69589.32 1016272
80 -90%| 24959.4% 63881.14 1888627
90 - 50%| 95529.1( 79127.99 5954559
3
3
0
8
1

Fuzzy-PI
1092224
9622.48

50-40%| 12770.29 13949.2 1227111
40 - 30%| 14849.3§% 32954.7 13640.24
30-20%| 17674.6% 58307.9 12579.83
20-10%| 25622.83 43093.5 1207315
10 - 50%| 100773.71 75604.4 43639,44
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Table 6 shows the results of Goodharts metric thla¢s into account information about the error andtrol
signal. Pl and Schedule-PI controllers have bgtézformances than the Fuzzy-Pl in some refererid@s. occurred
because effort for the control signal was greatesome cases in Fuzzy-Pl. However as the testmyista plant used
in the petroleum industry the relationship betwegpended energy control compensates for the outadrties final
product.

Table 6. Performance Metrics by Goodhart (Goodégat. 1991).

Set Point Pl Schedule-RlI  Fuzzy-PI
50 - 60%| 55.05 58.25 52.43
60 - 70%| 41.89 48.71 57.41
70 - 80%| 44.20 61.00 67.35
80 - 90%| 50.24 79.34 84.76
90 - 50%| 47.10 42.94 49.49
50 - 40%| 42.06 39.59 49.22
40 - 30%| 20.69 23.84 32.94
30 - 20%| 16.17 20.46 26.07
20 - 10%| 12.46 13.04 16.42
10 - 50%| 38.05 49.78 44.15

5. CONCLUSIONS

This paper details the implementation of a Fuzzyeitroller in Simulink/Matlab® for a petroleum pla The
results were compared to Pl controllers and ScleeBulthrough graphs and three metrics for evalggpierformance.
For all references Fuzzy-Pl controller showed batsults than the Pl and schedule-PI in metrics bad ITAE. In
Goodharts metric, the Pl and schedule-Pl cont®l#town smaller values than the Fuzzy-Pl, probablyause the
Fuzzy-PI uses bigger amplitude control signal imsaoeferences.

For further research, it is intended to apply stutbance in the plant and compare the respongagmed with
these three controllers. Another suggestion isstoraore linear variables for the error and thereraoation.

The exchange of the classic controller for more glem control algorithms is a tendency for betterfenance in
industrial control plants, especially in systemshwionlinear pronounced. The fuzzy-Pl used has detmated that
nonlinearity compensation of the simulated systeachievable.
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