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Abstract. It is well known that the environment degradation has come along the time positioning as one of the main
problems from modern world. Among several questions of the environmental interest the methane bubble rise in the lakes
can be emphasized, from the anoxic sediment in the bottom of lake until water interface atmosphere. In particular, the
present academic work has come to treat mathematic modeling of the bubble rise through sediment viscous fluid near the
bottom lake and present results, via Mathematics and Computing-Numeric Simulation, about the terminal velocity ascent
of the bubble.
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1. INTRODUCTION

The motion of the a single bubble has been studied by several researchers, then this problem promotes research in
areas such as experimental, numerical and quantification. Many monographs, articles and technical papers come over the
last years being done in order to describe the details of this movement. To understand the velocity’s rise, the shape, the
path traveled and others questions, for various types of the fluids, it is important in a infinity of the applied problems of
the sciences.

For example, the bubble rising freely in quiescent non-newtonian viscous inelastic fluids was investigated experimen-
tally and computationally by Zhang et al. (2010). There, the autors demonstrated that the comparison of the experimental
measurements of terminal bubble shape and velocity with the computational results are satisfactory, when the fluid was
shear-thinning. Experimentaly, Shew and Pinton (2006) investigated the dynamics of millimetric size air bubbles rising
through a still 1% polyacrylamide/water solution. They compared the oscillatory path of the bubble with those bubbles
rising in water and they found changes in path geometry, the onset of path instability, as well as lift forces. They said that
the observed effects are attributed to viscoelastic effects in the wake of the bubble. To simulate bubble motion in newto-
nian and viscoelastic fluids have been investigated too. Jiménez et al. (2005), studing axisymmetric gas-liquid systems,
compared the computational results with experimental results. They shown in their work the dynamics of a gas bubble
bursting a free surface of a newtonian and viscoelastic fluid. Majumder et al. (2005) developed a theoretical model for
predicting dynamic behaviour of bubble dispersion at plunging region in an ejector induced downflow bubble column
reactor. The model of their work is able to simulate the instantaneous growing shape of bubble during its formation and
determine the final size of detachment at plunging point of liquid jet in incompressible newtonian and non-newtonian
fluids. For situation of the ionic liquids, Wang et al. (2010) simulate the motion of single bubble. They used in your
simulations three ionic liquids, i.e., bmimBF4, bmimPF6 and omimBF4, and the calculation results agree well with the
experimental data. This work was important for understanding the fluid dynamic performance of bubbles in ionic liquids,
and could provide a useful tool for designing a bubble column with ionic liquids as its solvents. The buoyancy and drag
forces are strongly dependent on fluid properties of gravity and equivalent diameter, when a bubble ascend in a liquid
column. Talaia (2007) showed that bubble’s rise terminal velocity is strongly dependent on dynamic viscosity effect. For
this, he studied a set of bubble rising velocity experiments in a liquid column using water or glycerol. The data set allowed
to have some terminal velocities data interval of 8.0− 32.9cm/s with Reynolds number interval 1.3− 7490.

In the case of numerical context, Barkhudarov and Chin (1994) analysed the numerical stability of the free-surface-
tracking algorithm based on the SOLA-VOF method when modelling gas bubble evolution in a fluid. The code for
simulating incompressible, imiscible, unsteady, Newtonian, multi-fluid flows with free surfaces was building by Sousa
et al. (2004). The numerical method of them is based on the GENSMAC-3D front-tracking method. The free-surface and
the interfaces are represented by an unstructured Lagrangian grid moving through an Eulerian grid. Complex numerical
simulations such as two bubbles rising in a container was realized, showing the capability and robustness of method.
Annaland et al. (2005) in your paper, propose a hybrid model for the numerical simulation of gas-liquid-solid flows using
a combined front tracking and discrete particle approach applied for, respectively, dispersed gas bubbles and solid particles
present in the continuous liquid phase. In this work was studied the effect of the volumetric particle concentration and
retard effect on the bubble rise velocity due to the presence of the suspended solid particles.

In the environmental scope, some scientific papers have the aim to investigate the methane’s transport from sediments
to water bodies via bubbles. Methane plays an important role in the atmosphere as a greenhouse gas. Louis et al. (2000)
says that methane bubbles contribute significantly to greenhouse gas fluxes because they are a direct conduit of CH4
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from sediments to the atmosphere, escaping microbial oxidation. The contribution of lakes and swamps to the total
methane flux to the atmosphere is about 25% (Makhov and Bazhin, 1999). McGinnis et al. (2006) quantified methane
gas bubble dissolution using bubble modeling and acoustic observations of rising bubbles to determine what fraction
of the methane transported by bubbles will reach the atmosphere. The quantity of methane produced by sediments
of Wintergreen Lake was measured by Strayer and Tiedje (1978). There, they measured methane by ebullition (using
bubble traps) and estimating methane in the water column by diffusion. Bastviken et al. (2004) says in your work that
lakes sediments are critical’s points of methane production, and the methane can be exported from the sediment either
by ebullition or by diffusion. They explain that ebullition results in direct flux of methane from the sediment to the
atmosphere, with limited impact of methane oxidation in the water column. For this work they took data of the 11 North
American and 13 Swedish lakes, and literature values from 49 lakes.

According to what was exposed, we propose in this work to model and simulate the fluid flow around of the air and
methane spherical bubbles, in a axisymmetric computational grid that models the domain located near the bottom of a
lake. The equations which governing flow field are discretized by a finites differences approximations on a stationary
grid, and a bubble moves through the stationary grid. Thus, we would describe the initials characteristics of the bubble’s
rise to environmental interest.

The rest of this work proceeds organized as it follows. In the section 2 we present the studied domain, the governing
equations, initial and boundary conditions, nondimensionals, appropriate to the mathematical model. In the section 3
we show the main steps of the calculation from our code and comment on the methodology applied in the numerical
discretization of the computational mesh and of the equations. In the section 4 we display a set of simulations comparing
our results with the literature in the air-water system. This allowed us to simulate the cases in the methane-water and
methane-near the sediment systems. In the section 5 we conclude about the work developed and suggest a study future
for the rise of the bubble. Finally we make the acknowledgments.

2. MATEMATICAL FORMULATION

The motion of bubble inside the fluid is considered axisymmetric in (r, z) coordinates system. In our model we
consider that the laws governing the buoyancy of a gas bubble in an incompressible newtonian fluid are:

∇.V = 0 (1)

ρ
DV

Dt
= ∇.σ + ρG (2)

F = m.
dVc
dt

(3)

this model D/Dt, d/dt are material and temporal derivatives; σ is the viscous stress tensor; V , Vc , G and F are vectors
velocity, mass’s center velocity, gravity and resultant of forces; and finally ρ, m are constants density and mass. The
Eq. (1), Eq. (2) governing to motion of the fluid and Eq. (3) the ascend motion of the bubble.

The domain studied in this work is shown in Fig. 1. The Ng , Pg are the viscosity and density of gas and Nf , Pf are
the viscosity and density of the fluid around of the bubble, finally R and H are the dimensions horizontal and vertical
respectively.

Figure 1. Geometry used.
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Let L, U, N and P denote length, velocity, viscosity and density scales and consider the nondimensionalization below,
where gi is the gravity component and g0 the constant.

r = Lr̄ z = Lz̄ u = Uū v = Uv̄ ρ = Pρ̄ t = L
U t̄ p = PU2p̄

vol = L3v̄ol E = L2PfU
2Ē W = L2PgU

2W̄ gi = g0ḡi

Introducing nondimensionalization into Eq. (1), Eq. (2) the equations describing fluid field around bubble may be
written as:
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∂r̄
+
∂ūv̄
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so that Re = UL/N, Fr = U2/Lg0 are the associated Reynolds number and Froude number, respectively.
The rise of bubble is due the empuxo (E), weight (W ) and viscous force (FV ), thus Newton’s second law (Eq. (3))

we have that the move the center mass (rc, zc) of the bubble is given from the following expressions:
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with v̄ol being the nondimensional volume of the bubble, Ē = −(1/Fr)ρ̄f ḡz v̄ol and W̄ = (1/Fr)ρ̄g ḡz v̄ol.
The F̄ V act throughout surface (C), Fig. 1, through it occurs the coupling among the equations Eq. (1), Eq. (2) and

Eq. (3). It is given as (Pontes, 1999):
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It is important to note that FVr is null, resulting in ūc = 0, because the problem is considered in axisymmetric system.

The viscous force in direction z is given as follows

FVz =
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∂ū

∂z̄
+
∂v̄

∂r̄

]
n1 +

[
−p̄+

2

Re

∂v̄

∂z̄

]
n3

)
dl (10)

The initial condition is

V̄ 0 =

(
ū
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)
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)
, 0 ≤ r̄ ≤ R̄ , 0 ≤ z̄ ≤ H̄ , t̄ = 0 (11)

and no-slip boundary conditions on the container walls are implemented by
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At the free surface, with absence of surface tension, the boundary condition is such that,
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We considered the free surface as a boundary condition because the ascent of the bubble can not move it. If it occurs we
will increase the vertical dimension, hoping that the free surface does not move. We want to impose boundary conditions
that simulate the rise in an infinite medium.

From the assumption of axial symmetry, then

ū = 0 ,
∂v̄

∂r̄
= 0 , 0 ≤ z̄ ≤ H̄ , r̄ = 0 , t̄ > 0 (14)

So, our mathematical model is given by system of equations Eq. (4), Eq. (5), Eq. (6), Eq. (8) and Eq. (10) subject
to conditions Eq. (11) - Eq. (14), and a computer code was developed in C language to solve the mathematical model
numerically.

3. NUMERICAL METHODOLOGY

The problem of this work was solved based on FREEFLOW-AXI code developed by Oliveira (2002). There, the code
solves the equations Eq. (4), Eq. (5), Eq. (6) by Projection Method. It was prepared for solving only axisymmetric free
surface flows applying GENSMAC (Generalized-Simplified-Marker-and-Cell) method developed by Tomé and McKee
(1994). We extend the code to solve immersed bodies problems in a fluid pool where the body interacts with the fluid.

In our code, to solve Eq. (4), Eq. (5), Eq. (6), Eq. (8) and (10), we assume that in a given time t̄0 , the velocity field
V̄ t̄0 is known, boundary conditions for the velocity and pressure are given, and the mass center of the bubble is know too.
To compute the velocity field, the pressure field and bubble’s positon at the advanced time t̄ = t̄0 + δ̄t, we proceed as it
follows:

1. Let
(˜̄p)t̄0 be a pressure field which satisfies the correct pressure condition on the free surface.

2. Calculate the intermediate velocity field ˜̄V from

∂

∂t̄

(˜̄V ) = −∇˜̄p−∇.(˜̄V ˜̄V )+
1

Re

[
∇ ˜̄V +

(
∇ ˜̄V )T]+

1

Fr
Ḡ (15)

with
(˜̄V )t0 =

(
V̄
)t0 (correct boundary conditions).

3. Solve the Poisson equation (Tomé et al., 1996b) to the scalar function ψ (r, z, t)

∇2ψ = ∇. ˜̄V (16)

where the boundary conditions are ∂ψ/∂n = 0 on rigid boundaries and ψ = 0 on the free surface.

4. Compute the velocity field updated

V̄ = ˜̄V −∇ψ (17)

5. Compute the pressure by

p̄ = ˜̄p+
1

δ̄t
ψ (18)

6. Compute the viscous force FVz , Eqs. (10).

7. Update position and velocity of the mass center, simulating the bubble’s move. This is done by solving Eqs. (8).

8. Update the markers positions, solving

dr̄

dt̄
= ū ,

dz̄

dt̄
= v̄ (19)

this step is to movement the markers to their new positions (Oliveira, 2002). This results of methodology to solve
problems of free surface flows.
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Figure 2. Bubble’s cell (left), computational grid (middle) and fluid’s cell (right).

A scheme for identifying the free surface, boundary and the fluid region is employed. To accommodate this, the cells
within the mesh are defined as full cells (F), surface cells (S), empty cells (E) and boundary cells (B), Fig. 2 middle. A
detailed description of these is given by (Tomé et al., 2001). Our model equations is solved by a finite difference method
on the cartesian grid (Fig. 2 middle), which dimension of the cell is δ̄r × δ̄z where δ̄r ≡ δ̄z.

As can be seen in the Fig. 2 right, the variables p̄i,j , ψi,j are positioned at a cell center, while ūi,j , v̄i,j are staggered
by a translation of δ̄r/2, δ̄z/2 respectively. This it is reason of the label ūi+1/2,j , v̄i,j+1/2.

In case of the boundary cells (B), those (B) in black are the rigid boundary and the condition no-slip Eq. (12) is
employed. But the cells (B) in orange assumes the bubble’s velocity ūc, v̄c, Fig. 2 left. Here ūc = 0 and v̄c is calculated
by step 7, it closes the question about the boundary conditions for our problem.

More precisely, the Eq. (15) is solved by explicit Euler method (Fortuna, 2000) in faces (i+ 1/2, j) and (i, j + 1/2),
in order to correct ūi+1/2,j , v̄i,j+1/2 soon by Eq. (17). The convective term is approximated by a high order upwind
scheme namely SDPUS (Lima, 2010), and diffusive and pressure terms are approximated by central differences.

The Eq. (16) consists in a sparse symmetric system, the discrete Poisson equation, then it is solved by conjugate
gradient method. Poisson’s equation has error of the order O(h2) (h = δ̄r ≡ δ̄z), so that halving the stepsize roughly
reduces the error by a factor of four (Griebel et al., 1997).

Ownership velocity ūi+1/2,j , v̄i,j+1/2 and pressure p̄i,j of the fluid, the force FVz , in the step 6, is calculated and
the system Eqs. (8) is solved by Euler method, providing translation of the bubble. Of course, appropriated boundary
conditions are implemented in the border C. Observing the Fig. 3 right, the cells (F) in green were type (B), see Fig. 3
left, but these cells (F) do not have prescribe velocity in the current time. Then, we attribute bubble’s velocity these cells.
Similarly, this idea occurs about the cells (B) in green. Here we have the effect of the coupling between fluid’s equations
and bubble’s equations. We emphasize that these things, and its details, were incorporated to FREEFLOW-AXI for to
simulate the slice’s move immersed in the fluid containers.

Figure 3. Left - Types of cells used in the Code. Right - Bubble’s displacement and news labels for cells
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Finally the Eqs. (19) are solved by Euler method too, then the update the markers positions is realized. For more
details about marker particles see Tomé et al. (1996a).

4. RESULTS AND DISCUSSION

4.1 Validation of numerical predictions

The Bubble’s nondimensional parameters employed in this work are, Reynolds number (ReB) and Bond number
(BoB). The dimensionless numbers are defined as:

ReB =
DvTc
νf

, BoB =
g0 (ρf − ρg)D2

σ
(20)

here D and vTc are bubble’s diameter and terminal velocity of the mass center respectively, and σ is the surface tension.
Mukundakrishnan et al. (2007) studied the size of the solution domain (R×H) for cases spherical and spherical-cap-

skirted bubbles. They explains that the wall effects are noted when the dimensions of the channel are reduced from a given
values. The Bubble’s Reynolds number decreases when reduce is made, then the terminal velocity of mass center can be
not realistic. So, they employed in yours simulations R ≥ 6D and H ≥ 3D. They concluded that the bubble motion
results in the attainment of terminal velocity values and shapes corresponding to those in an infinite medium. On the path
followed, Wua and Gharib (2002) illustrated that bubbles with diameter less than about 0.15 centimeters rise rectilinearly.
In this work, they showed that nearly spherical bubbles, with diameter 1.11 milimeters, travel straight path and switches
to a zigzag path when the bubble diameter exceeds 0.15 cm or Reynolds number exceeds 280.

Table 1. Data set to simulations.

Domain R(1) H(1) grid Bubbles D(1) Systems
S1 3.0 21.0 30× 210 B1 1.0 air/water
S2 6.0 21.0 60× 210 B2 1.0 methane/water
S3 9.0 12.0 90× 120 B3 1.0 methane/near the sediment
S4 9.0 21.0 90× 210 B4 1.5 air/water
S5 9.0 42.0 90× 420 B5 1.5 methane/water
S6 14.0 32.0 140× 320 B6 1.5 methane/near the sediment

(1): measured at milimeters

Considering the previous information we performed a set simulations whose data are shown in Tab. 1. A simulation
is the union of the lines between tables left and right respectively. To simulations {Si;B1} (i = 1, 2, 3, 4, 5) us use
BoB ≈ 0.13 and at {S6;B4} BoB ≈ 0.3 with ReB < 300 at all simulations. Then, according to the map of Fig. 4 our
simulations fits into the rise of a spherical bubble.

Figure 4. Shapes of air bubbles rising in water (Clift et al., 2005).

Note at Tab. 1 that the valuesR andH satisfyR ≥ 6D andH ≥ 3D to simulations, however the valueR for {S1;B1}
is not verified. Look that the variation in R causes the appearance of the wall effects, see Fig. 5 left. Analogously the
variation in H causes it too, see Fig. 5 middle, but it at low intensity.

Observing the bubble’s velocity of the set data {S4;B1} and {S5;B1}, Fig. 5 right, we conclude a close proximity
between the velocity profiles. Then considering the profile from {S4;B1} as numerical solution and comparing it with
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Figure 5. Bubble’s Reynolds to simulations (left), (middle) and Bubble’s velocity (right).

the solution obtained by Xu and Guetari (2004), look Fig. 6 left, we conclude that results are in good agreement. This
displays that our method is able to simulate the bubble buoyance.

Clift et al. (2005) calculated experimentally the terminal velocity for spherical bubble with diameter D = 1.5mm,
and Nadooshan and Shirani (2008) used the actual densities of air and water for this bubble obtaining results in close
agreement with the experimental data. Using the set data {S6;B4} and these actual densities, but nondimensionals, we
compared the rise velocity, see Fig. 6 right. Good agreement between results was observed too. This prompted us to
evaluate the behavior of the bubble velocity in a more viscous fluid, which is one of the objects of our investigation.

Figure 6. Bubble velocity for D = 1.0mm (left) and D = 1.5mm (right).

4.2 Aplication of numerical predictions

Typically the bottom’s lakes is considered without oxygen (anoxic), this location takes place the biological process
called methanogenesis by microorganisms methanogenic Archaea (Strayer and Tiedje, 1978). Methanogenesis is the
process organic matter degradation to methane (Oremland, 1988). The Bubble’s methane formation is expected at the
bottom’s lakes in conditions favoring the occurrence of methanogenesis. When there are high rates of methane production
and it is greater than the rate of vertical diffusion of methane, which occurs toward the sediment-water interface, this gives
an increase of supersaturation of the gas and thus appears the bubble of methane (Louis et al., 2000). Abe et al. (2005)
measured methane in sediments of the Lobo-Broa Reservoir. In this lake they observed that, when the gas exceeded its in
situ gas saturation value at this shallow water depths, resulting in numerous sediment bubbles, analogously the Louis et al.
(2000). Even though the Lobo-Broa Reservoir is classified as oligotrophic (low amount of nutrients in the sediment), the
sediment gas concentrations were high.

According to the facts mentioned in the previous paragraph, we believe that is important to know the rise of the bubble
of methane near the sediment. Under these conditions, we consider a bubble that has been formed and that it is in the
water but near to the sediment. To simulate this situation was considered a fluid as water and another two times more
viscous than water. The simulations occurred for data {S4;Bi}-{S6;Bj} (i = 1, 2, 3; j = 4, 5, 6) from Tab. 1, the number
BoB is approximately the same as above and ReB is smaller than the one above too.

Looking the graphic of the Fig. 7 (left) to sets {S4;B1} and {S4;B2}, can be concluded that the rise velocity of
bubbles air and methane are very similar, even though the methane density be close to 60, 45% of the air density. Can
be also noted that bubble’s velocity of methane is minor when immersed at fluid whose viscosity is two times more than
water, see velocity’s profiles of the sets {S4;B2} and {S4;B3} in same figure. Analogously, it is observed too in case of
a bubble greater, Fig. 7 (right).
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Figure 7. Bubble velocity for D = 1.0mm (left) and D = 1.5mm (right).

This shows that to amend at viscosity changes strongly the ascend velocity. In this aplication, we considered the
viscosity of the fluid two times more than water because it is next to lake bottom. It is known that a fluid with a small
concentration of sediment remains with newtonian properties and may make changes in its viscosity; when the sediment
concentration increases, the mixture ceases to behave as Newtonian, giving then non-Newtonian properties (Santos et al.,
2003).

Summarizing, was admitted a Nepheloid layer (Nepheloid layer is a layer of water that contains significant amounts of
suspended sediment) of the fluid whose profusion of sedimentary particles, with negligible size, are distributed throughout
the fluid and this alters the viscosity. This feature is appropriate for the fluid and some papers has discussed this fact.
For example, Belinsky et al. (2005) performed experiments and simulations in order to characterize the distributions of
concentrations of suspended particulate matter in water columns of lakes and reservoirs. In this work they concluded that
the distribution of suspended particulate matter exhibited a layer near the bottom, that is thought to be analogous to the
benthic nepheloid layer observed in larger lakes.

5. CONCLUSION

In this paper, a nondimensional model to simulate the rise of an axisymmetric spherical bubble was presented. The
model proved to be a simple alternative when compared to that presented by (Annaland et al., 2005) and (Sousa et al.,
2004). We presented a finite difference technique for solving the fluid field around bubble combined with Newton’s second
law that move mass’s center (rc, zc) and consequently simulate the bubble’s movement. This technique proved to be able
to simulate the rise of the bubble for a set of the cases. To this, we compared our results with those in existing literature.
Besides we simulated the situation of to ascend methane’s bubble immers at fluid more viscous than water and next to lake
bottom. We showed that this fluid amends appreciably the ascend velocity, because a small particle concentration changes
the viscosity. We emphasize that the alteration in viscosity, with the intention to consider a concentration of sedimentary
particles suspended in water, showed a significant change in the bubble rise velocity, and it is in accordance with the work
of Talaia (2007) and Annaland et al. (2005).

This study shows the need to investigate the fluid when the concentration of sedimentary particles is appreciable,
because the fluid is non-newtonian. Therefore, in a future study buoyance’s effects of the bubble in a non-newtonian
fluids will be explored.
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