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Abstract. This paper reports an experimentally validated numerical analysis of airflow through a non-isothermal 
three-dimensional room, where the air is supplied horizontally on the upper left and is exhausted through the opening 
located on the lower right. The dimensions of the room take the following values: height H = 3.0 m, length L = 9.0 m, 
width W = 14.1 m, inlet height h = 0.168 m, outlet height t = 0.48 m, with the inlet and outlet openings as large as the 
room. The main purpose of the study is to assess the buoyancy and inertial forces effects at the airflow. Due to the 
turbulent flow, a Reynolds-stress model has been employed to predict the airflow pattern in the room. The model has 
been validated by comparing the numerical results with experimental data from the literature for dimensionless 
temperature and mean air velocities distributions on different regions of the room. The velocity vectors results have 
shown that the airflow pattern is significantly affected by increasing Archimedes number, and depends on the initial 
conditions when the buoyancy force predominates. In addition, the comparison between predictions from the 
turbulence model analyzed against those from the standard k-ε model has shown evidence that, for high buoyancy 
effects, different turbulence models can lead to different airflow patterns.   
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1. INTRODUCTION  
 

Considerable success has been achieved by using the computational fluid dynamics (CFD) to predict indoor airflow, 
although there are still some difficulties as related in Chen (1995; 1996). The CFD to solve turbulent flow is further 
divided into three approaches types: direct numerical simulation (DNS), Reynolds Averaged Navier-Stokes (RANS) 
equation modeling, and large eddy simulation (LES). As the k-ε model assumes the isotropy for turbulence, anisotropic 
models such as RSM and LES are being recommended for the simulation of complex tree-dimensional flows (Chen, 
1996; Monokrousos et al., 2008). However, RSM has deficiencies such as: non-universal model parameters, numerical 
difficulties, and it is computationally expensive by an order of magnitude when compared to the k-ε model.   

Numerical simulations of mixed convection are available in literature. Nielsen et al. (1979) used the standard k-ε 
model with wall functions and calculated the flows in a ventilated room with a heated floor. The prediction agreed well 
with the experimental data, nevertheless it is known that the wall functions cannot calculate buoyancy effects 
accurately. Chen (1995) compared the performance of several k-ε models on indoor airflow simulation and found the 
performance of RNG k-ε model is better in mixed convection than in forced convection flows. The Reynolds stress 
model (RSM) was applied by Chen (1996) on indoor airflow simulations, and the performance of this model is less 
satisfactory in mixed convection than in forced and natural convection. The model combining a near-wall one-equation 
model and a near-wall natural convection model with the aid of direct numerical simulation (DNS) was investigated by 
Xu and Chen (2001), while the model using one-equation model for near-wall region and the standard k-ε model for the 
outer wall region was investigated by that authors for predicting forced, natural and mixed convection. Susin et al. 
(2009) investigated the influence of two values of inlet slot width on the velocity characteristics and turbulent intensity 
of the airflow inside an isothermal rectangular room. The performance of three turbulence models, standard k-ε, RNG k-
ε, and k-ω has also been investigated. On the whole, the performance of the standard k-ε model was better than those of 
the other two turbulence models. Mazzaro et al. (2010) studied the isotherm airflow in a room using two turbulence 
models, the standard k-ε and a RSM model, considering two aspect ratios of the room and two inlet slot widths. In 
general, both models gave similar velocity profiles. However, in terms of streamlines, the RSM model estimated more 
flow secondary recirculation than the standard k-ε model. 

Direct numerical simulations have provided physical insight into the phenomena of transitional and turbulent flows, 
despite the fact that they are limited to simple and moderate Reynolds number flows (Moin and Mahesh, 1998). The 
fine grids (and the corresponding small time steps) necessary in the DNS of turbulent flows at moderate to high 
Reynolds numbers give rise to very high computational costs. Therefore, other approaches based on LES have been 
developed to be able to simulate transitional and turbulent flows in large-enough domains and at high Reynolds 
numbers. In LES the mesh size is chosen considerably larger than for DNS. For flows with solid walls, the thin 
boundary layers adjacent to the walls need to be resolved in both DNS and LES for accurate results. Therefore, even 
LES requires a substantial computational effort, but lower than DNS: A typical resolution for an LES is approximately 
1–20% of a corresponding fully-resolved DNS (Monokrousos et al., 2008). 
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From a practical point of view, the use of LES and DNS is still far from to be used commonly due to the high 
computational costs associated with them. For these reasons, it is thought that the RANS equations associated with 
turbulence modeling will be the main CFD tool used by researchers at least in the near future (Murthy and Joshi, 2008). 
Nevertheless, there is a need to improve the accuracy and reliability of the solutions of turbulent flow fields obtained 
from the RANS equations, selecting the model parameters on the basis of the understanding of mean and the turbulent 
flow fields. It is desirable that a benchmark database to be available with extensive exercises of the comparative 
performance of these turbulence models. Therefore, one of the objectives of the present study is to study the 
performance of the model RSM-LLR (Launder et al., 1975) to predict the non-isothermal flow inside a well-known 
configuration, the Annex 20 test room (Nielsen, 1990). A second and main objective is to evaluate the influence of 
Archimedes numbers on the studied flow. 

The remainder of the paper is organized as follows. The experimental apparatus (Nielsen, 1976) and physical 
problem are described in Section 2. In the same section, the governing equations and turbulence models are detailed, 
while the numerical methodology is introduced in Section 3. The main results concerning the turbulence model 
performance in predicting the indoor airflow are presented in Section 4. First, the focus is on the validation of the RSM-
LLR model while in the second part a feedback about influence of Archimedes number on the referred flow is 
considered. The paper ends with a summary of the main conclusions. 

 
2. PHYSICAL PROBLEM 
 

The non-isothermal airflow regarding the Annex 20 benchmark described in Nielsen (1990), for which some 
experimental and numerical data are available in the current literature, was chosen to perform the proposed analysis. 
Nielsen’s experiment was conducted in a cavity as shown in Figure 1. The floor is heated, and the air is supplied 
horizontally on the upper left by a rectangular opening and is exhausted through another rectangular opening located in 
the lower right of the room. Although the configuration is a laboratory model rather than an actual room, the flow is 
mixed convection and represents flow features found in real rooms.  

 

 
Figure 1. Experimental apparatus (Nielsen, 1976), source: http://www.cfd-benchmarks.com. 

. 
Figure 2 shows a sketch of the numerical domain corresponding to the Nielsen’s device with the dimensions 

recommend by Annex 20 as a benchmark exercise: height H = 3.0 m, length L = 3.0H, width W= 4.7H, inlet height h = 
0.056H, inlet width w = W and outlet height t = 0.16H. Experimental results for this flow are available in terms of 
dimensionless temperature profiles along two horizontal lines of the plane z/W=0.66, at the floor (y = 0) and at y = 
0.75H, as illustrated in Figure 2. 

This non-isothermal airflow is characterized by Reynolds and Archimedes numbers based on the height of the air 

inlet, Re = U0h/ν, and on the difference of air temperature between the inlet and the outlet openings, 2
0UTghAr ∆= β , 

where U0 is the x direction mean velocity component in the inlet of the room [m/s], ν is the kinematic viscosity [m2/s], 
β is the thermal expansion coefficient of air [1/K] and ∆T is the difference of temperature between return and supply 
openings [K]. In the present work, seven cases have been considered as described in Table 1. The two first cases were 
established to validate the turbulence model under analysis, whereas the other cases (3rd to 7th) had been investigated to 
study the Archimedes effects on the fluid flow. 
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Figure 2. Sketch of the geometry studied. 

 
 

Table 1. Configurations investigated in this study. 
Case Re Ar Floor heat flux (W/m2) 

1 7,100 1.10 ×10-6  0.001156 
2 2,400 8.50 × 10-5   0.003452 
3 5,000 1.10 × 10-6 0.000367 
4 5,000 1.10 × 10-4 0.036718 
5 5,000 1.10 × 10-2 3.671821 
6 5,000 2.00 × 10-1 73.436425 
7 5,000 1.73 × 10-1 63.522508 

 
3. PROBLEM FORMULATION 

 
3.1. Mathematical equations 
 

Reynolds (1895) decomposed the Navier-Stokes equations in two parties, one related to the average value of the 
velocity vector and another related to its fluctuation, and applied the time average operator on them to study turbulent 
flows. The resulting set of equations is known as the Reynolds average Navier-Stokes (RANS) equations and gives 
information about the mean flow. Although this approach is not able to describe the multitude of length scales involved 
in turbulence, it has been largely used all of the word because in many engineering applications the information about 
the mean flow is quite satisfactory. 

Considering that density and viscosity variations are small so that their effects on turbulence can be ignored, the 
fluid is Newtonian, the flow is incompressible and the steady state, the governing RANS equations in Cartesian 
coordinates can be expressed  (Versteeg and Malalasekera, 1995) as: 
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where Ui and Uj are components of  the average velocity vector [m/s], ρ is the fluid density [kg/m3], µ is the dynamic 
viscosity of the fluid [Pa.s], P is the mean average pressure [Pa] and Fi is a component of the bulk force vector [N]. The 
extra-term that appears in Eq. (2) comparing to the original Navier-Stokes equations, ji uu , is the product of fluctuation 

velocities [m2/s2] termed Reynolds stresses and is never negligible in any turbulent flow. It represents the increase in the 
diffusion of the mean flow due to the turbulence. Equations (1) and (2) can only be solved if the Reynolds stress tensor 
are known, a problem referred to as the ‘closure problem’ since the number of unknowns is greater than the number of 
equations. 

The main goal of the turbulence studies based on RANS equations is therefore to determine the Reynolds stresses. 
According to Kolmogorov (1942) they can be evaluated by the following expression: 
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where ijδ  is the Kronecker delta and the kinetic energy of the turbulent motion, k, is defined as 2ii uuk =  [m2/s2]. 

Substitution of Eq. (3) into Eq. (2) results in the average Navier-Stokes equations with the Reynolds stresses modeled 
via the viscosity concept, 
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where tµ  is the turbulent viscosity, kPP 32+=′  is the modified pressure, T0 is the temperature in a reference point 

[K], T is the temperature [K], and g is the gravity acceleration [m/s2]. The last term on the right side of Eq. (4) takes into 
account of buoyancy effects. 

The turbulent viscosity can be expressed as the product of a velocity scale, u [m/s], and a length scale, Lµ [m], 

µρµ uLt = . Considering the velocity scale being calculated by 2
1

ku = , Kolmogorov (1942) and Prandtl (1925) 

independently proposed the following relation for the turbulent viscosity,  
 

µµρµ Lkct
2/1= , (5) 

 
where cµ (=0.09) is an empiric constant. 

The momentum equation, Eq. (4), is coupled to the energy equation by the buoyancy term, and also by 
thermodynamics properties and transport coefficients if they are temperature dependent. As a result, the conservation of 
energy, Eq. (6), must be solved to obtain both temperature and velocity fields,  
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where τT,eff  is the effective turbulent diffusion coefficient for Temperature [m2/s], q&  is the thermal source [W/m3], and 

Cp is the specific heat at constant pressure [J/kgK].  
In order to complete the set of equations described above, the most popular turbulence models define two other 

transport equations: one for the turbulent kinetic energy, k, and another for a variable that relates k to Lµ.. These models 
are called two equations models, and the standard k-ε model (Launder and Spalding, 1974) was tested in this study with 
the explicit formulations described below. 

In the standard k-ε model, proposed by Launder and Spalding (1974), the second variable for the complementary 
transport equations is the rate of the viscous dissipation, ε [m2/s3], which is related to k by: 

 

µε Lk 23= . (7) 

 
Consequently, the turbulent viscosity νt is calculated in the k-ε model as 
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The resulting set of equations concerning the standard k-ε model is then composed of Eqs. (1), (4) and two transport 

equations for k and ε that are, respectively, given by: 
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where c1 = 1.42 and c2 = 1.92 are empirical constants, and σk = 1 and σε = 1.22 are turbulent Prandtl numbers. 

The standard k-ε model was developed for high Reynolds number flows; therefore it cannot represent adequately the 
viscous region near solid surfaces. This problem is solved coupling to the above-mentioned set of equations semi-
empiric wall functions to represent the near-wall flow. Besides, the use of wall functions saves computing time because 
avoids the fine grid near the walls necessary in low Reynolds number models.  

The Reynols Stress Model (RSM) is based on transport equations of the Reynolds tensor and dissipation rate of 
turbulent kinetic energy. Solving a transport equation for each component of the Reynolds tensor the RSM add for a 
three-dimensional flow six new equations to the equations system. The RSM model is called a second moment closure 
due to model only terms of third or higher order. There are several variations of RSM, the model used in this study is 
known as RSM-LLR described in Launder et al. (1975). The transport equations for the Reynolds tensor are derived 
from the Navier-Stokes equations and are described by: 
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where the first term represents the variation rate of the viscous stress tensor, τ , due to production, P, and dissipation of 
the turbulent kinetic energy, ε, the fourth term represents the molecular and turbulent diffusion, and the last term 
correlates pressure and tension. 

The production, the dissipation of the turbulent kinetic energy, and the turbulent diffusion can be described by, 
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The last term in Eq. (11) combine the pressure with deformation of the flow, this term is responsible by 

redistribution of turbulent kinetic energy among the components of the Reynolds stress tensor, and can be described as: 
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In the RSM-LLR model used in this study, proposed by Launder et al. (1975), the Eq. (15) is described as: 
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where a = 32δ−kui

 is the anisotropy tensor, S = 2/])([ TUU ∇+∇
rr

 is the tensor rate, W = 2/])([ TUU ∇−∇
rr

 is the 

vorticity, C1 = 1.8, C2 = 0.8, C4 = C5 = 0.6 are constants. 
 
3.2. Boundary Conditions 
 

The inlet boundary conditions for velocity components were specified as U = U0 and V = W = 0, respectively, with 
U0 being the air average velocity in the inlet of the cavity obtained from Reynolds number based on the inlet height, Re 
= U0h/ν, equals to 2,400; 5,000 and 7,100 as the case specified in Table 1. Regarding k and ε, the inlet boundary 
conditions were calculated by k0 = 1.5(0.04U0)

2 and ε0 = 10k3/2/h, respectively. Zero relative pressure and zero gradients 
for the other variables are applied as the boundary conditions for the outlet. At the solid boundaries the no-slip and the 
impermeable wall boundary conditions were imposed for the velocity components, that is, U = V = W = 0. The 
turbulence quanties k, and ε are nulls at the walls. With the exception of the floor, along which a constant heat flux was 
added, please refer to Table 1, all walls were assumed adiabatic. 

 
4. NUMERICAL APPROACH 
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The numerical solution of the governing equations was performed using the commercial computational fluid 
dynamics code Ansys CFX version 11. In this code the conservation equations for mass, momentum and turbulence 
quantities are solved using the finite volume discretization method generated by staggered grids.  

In the method adopted in this work the interpolation of the properties at the control volume faces can be of primary 
importance on the accuracy of the numerical results. The classical approach of first order accurate upwind differencing 
usually suffers from inaccuracies in simulating complex flow situations. An effective approach to reduce truncation 
error, while maintaining the grid size within computational resource limits, is the adoption of a more accurate 
differencing scheme into the numerical analysis. In the present work, the first order upwind difference scheme (UDS) is 
firstly adopted in the solution of the governing equations, after that, such values are used to initialize the high resolution 
scheme (HRS). The HRS is both, accurate, reducing to first order near discontinuities and in the free stream where the 
solution has little variation, and bounded. Therefore its order of accuracy for the interpolated values can be major that 
two. The solution was considered converged when the sum of absolute normalized residuals for all cells in the flow 
domain becomes less than 10-6. 

 
5. RESULTS AND DISCUSSION 

 
The present study was conducted in three parts. Firstly, the influence of the spatial structured discretization on the 
prediction of the airflow was investigated, allowing to determining a grid independent solution for the turbulence model 
under analysis. Secondly, the effects of buoyancy and inertia forces have been analyzed by comparing the airflow 
pattern obtained by the RSM-LLR model for different Archimedes numbers. Lastly, by means of streamlines, the 
predictions from the RSM-LLR model have been confronted to those from the standard k-ε model. 
 
5.1. Analyzing the influence of grid refinement 
 

The grid independent solution for the turbulence model tested was defined by comparing the computed results for 
Re = 7,100 and Ar = 1.1×10-6 (case 1) and Re = 2,400 and Ar = 8.5×10-5 (case 2) using different grid schemes with those 
available from Nielsen’s experiment (Nielsen, 1976). As indicated in Fig. 2, dimensionless temperature profiles are 
available along two horizontal lines of the plane z/W=0.66, at y = 0 and y = 0.75H. Since both cases represent low 
buoyancy effects, their results in terms of dimensionless mean velocity profiles have also been compared to the 
experimental data from the Annex 20 isothermal case (Nielsen, 1990) to complete the grid-dependency analysis. 

In each grid the refinement was mainly carried out next to the walls, where the flow property gradients are steeper, 
considering the limit values of y+ for the wall function. According to the Ansys CFX version 11 manual, the range of y+ 
for the RSM-LLR model is 20 < y+ < 100. Table 2 shows the resulting grid schemes for case 2 disregarding the region 
after the outlet slot (see Fig. 2), which correspond to the following number of nodes: Grid 1 (13,125 nodes), Grid 2 
(52,500 nodes) and Grid 3 (210,000 nodes) 
 

Table 2. Number of nodes in directions x, y and z employed in each grid tested. 
  Re = 2,400 and Ar = 8.5×10-5 
 Total volumes x y z 

Grid 1 13,125 25 21 25 
Grid 2 52,500 25 42 50 
Grid 3 210,000 50 84 50 

 
The deviations between the calculated dimensionless velocity and temperature values obtained with the different 

grids were determined by the root mean square error given by: 
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where pX  = (T - T0)/∆T0 or U/U0 are the predicted dimensionless temperature or horizontal velocity, mX  are the 
measured dimensionless temperature or horizontal velocity, and n is the number of elements in the sample. 

The comparisons between dimensionless temperature and horizontal velocity profiles are presented in this paper 
only for Re = 2,400 and Ar = 8.5×10-5 (Figs. 3 and 4, respectively), because the behavior of case 1 is similar to that of 
case 2. Note that the results of grid 3 agree satisfactorily with the experimental data, mainly to velocities at the central 
plane however some minor differences occur to temperature at plane z/W = 0.66. 
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Figure 3. Effect of grid size on dimensionless temperature distributions at lines (a) y = 0 and  

(b) y = 0.75H of plane z/W=0.66 for Re = 2,400 and Ar = 8.5×10-5 (case 2). 
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Figure 4. Effect of grid size on dimensionless velocity distribution at lines x = H, x = 2H, y = 0.028H and y = 0.972H of 

central plane for Re = 2,400 and Ar = 85×10-6 (case 2). 
 

Table 3 describes the RMSE calculated for each computational grid used with RSM-LRR turbulence model in six 
different positions of two planes of the room. According Table 3, Grid 3 provided the smallest average RMSE value and 
reduced computational time consequently it was the grid chosen for the other simulations. 
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Table 3. Root mean square errors based on dimensionless horizontal velocity and temperature values for case 2. 

 
Velocity 

Plane z/W = 0.5 
Temperature 

Plane z/W = 0.66 
Running  

time 
Grid Average Average Hours 

1 0.0869 1.469 12.45 
2 0.0820 1.473 20.82 
3 0.0749 1.470 38.10 

 
 

5.2. Analyzing the influence of buoyancy and inertial forces effects 
 

The influence of the buoyancy phenomenon on the airflow behavior has been assessed by comparing the changes in 
the airflow pattern with the increase of the importance of the heat transfer on the floor, as indicated in Fig. 5 by means 
of the predicted velocity vectors in the central plane of the studied geometry. 

 
(a) Re = 5,000 and Ar = 1.1×10-6 (b) Re = 5,000 and Ar = 1.1×10-4  

 
(c) Re = 5,000 and Ar = 1.1×10-2 (d) Re = 5,000 and Ar = 2.0×10-1 

 
Figure 5. Velocity vectors in the central plane of the room predicted by the RSM-LLR model for different buoyancy 

effects. 
 

It can be noted, from Fig. 5, important changes in the movement of the fluid at the central plane of the room as the 
Archimedes number has been gradually raised from 1.0×10-6 to 2.0×10-1, while the Reynolds number has been 
maintained constant and equals to 5,000. At first, the flow pattern is similar to that found for the isothermal case (see 
Susin et al., 2009); the jet develops along the ceiling and creates a main recirculation zone dislocated to the right side of 
the room, Figs. 5a and 5b, which indicates that inertial forces is the predominant one. In the next case, with an 
Archimedes number equals to 1.0×10-2 (Fig. 5c), the jet starts flowing attached to the ceiling and then drops into the 
occupied zone with high velocities. The main recirculation is dislocated to near the floor, and a second recirculation 
zone can be observed on the down left corner of the room. A predominant phenomenon cannot be distinguished. The 
last case, Fig. 5d, shows a very different behavior of the airflow within the room. Since the difference of temperature 
between the supply air and that inside the room is important, the jet falls down as soon as it enters the room causing the 
inversion of the flow. The buoyancy is now the dominant effect.  

As it has been observed by Lemaire (1991), the airflow pattern depends on the initial conditions when the buoyancy 
effects are strong. Hence, in Fig. 6 is presented a comparison between the velocity vectors in the central plane of the 
room calculated with different initial conditions for case 7, Re = 5,000 and Ar = 1.73×10-1. The first three figures show 
the predictions using the RSM-LLR model, while the last one was obtained with the standard k-ε model for comparative 
purposes.  

 
(a) with null initial values 

 
(b) with initial isothermal RSM-LLR values 
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(c) with initial isothermal k-ε values 

 
(d) with initial isothermal k-ε values 

Figure 6. Influence of the initial values on the velocity vectors in the plane z/W = 0.5 predicted by (a, b, c) RSM-LRR  
and (d) standard k-ε models for case 7, Re = 5,000 and Ar = 1.73×10-1. 

 
When the initial conditions were nulls, the air movement inside the room was very close to that illustrated in Fig. 5d 

with Re = 5,000 and Ar = 2.0×10-1, which was calculated using similar initial conditions. However, the predictions by 
the RSM-LLR model using the solution of the isothermal case have revealed a main recirculation zone dislocated to the 
left side of the room and also a region of quite high velocities next to the ceiling when the solution came from the RSM-
LLR model itself (Fig. 6b), and the separation of the flow into two recirculation zones with different orientations (Fig. 
6c) when it came from standard k-ε model. The standard k-ε model using initial conditions from the k-ε model itself 
predicted an airflow pattern closer to the cases with low buoyancy effects, similar to airflow illustrated in Figs. 5a and 
5b, the main recirculation is on the clockwise direction and dislocated to the right side of the room. But, in contrast to 
the low buoyancy cases, the jet region cannot be distinguished very well and high velocities are observed just below the 
inlet opening. 

 
5.3. Comparing the predictions from RRS-LLR and standard k-εεεε models  

 
Figure 7 shows the contours lines of the stream at the plane z/W = 0.5 predicted by the RSM-LRR and standard k-ε 

models for different buoyancy effects. For cases 3 and 4, where the inertia is the predominant force and the flow 
develops completely along the ceiling of the room, the airflow patterns predicted by both models are quite similar 
except for next to the left wall. In this region, the k-ε model predicts an upward flow almost parallel to the left wall 
while the RSM-LRR model shows a secondary recirculation on the lower corner for case 3 (Fig. 7a) and a flow bended 
to the right side for case 4 (Fig. 7c). Comparing the separation point on the floor and the attachment point on the wall in 
this same region, note that such points are higher for the RSM-LRR model than for the k-ε model in cases 3 and 4, 
whereas the throw of the jet is approximately the same for both turbulence models. With respect to the streamlines 
presented in Figs. 7e and 7f, it is possible to see that the airflow pattern obtained from each turbulence model is very 
different, there are variations in size, in position and in magnitude of the main recirculation zone. It can be inferred from 
this last comparison that not only when the buoyancy effect clearly predominates, as indicated by Figs. 6c e 6d, 
different turbulence models can conduct to different airflow patterns.  

 
(a) Re = 5,000 and Ar = 1.1×10-6  

 

(b) Re = 5,000 and Ar = 1.1×10-6 

 

(c) Re = 5,000 and Ar = 1.1×10-4 

 

(d) Re = 5,000 and Ar = 1.1×10-4 

 
(e) Re = 5,000 and Ar = 1.1×10-2 

 

(f) Re = 5,000 and Ar = 1.1×10-2 

 
Figure 7. Streamlines for cases 3 to 5 predicted by (a, c, e) RSM-LRR and (b, d, f) by  standard k-ε  

models at the plane z/W = 0.5. 
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5. CONCLUSIONS 

In this work, three-dimensional numerical simulations of turbulent airflow through a non-isothermal room were 
conducted for seven cases classified according the buoyancy effect. The airflow has been modeled using the Reynolds 
average Navier-Stokes equations and primarily a turbulence model of second order closure: the Reynolds Stress Model 
(RSM-LLR) proposed by Launder et al. (1975). For comparative purposes, some cases have also been simulated using 
the standard k-ε model (Launder and Spalding, 1974). The RSM-LLR model has been validated by comparing the 
numerical results with experimental data from the literature for dimensionless temperature and mean air velocities 
distributions on different regions of the room, considering three grid levels. The choice of the best grid occurred 
through the RSME evaluation. After the choice of the best grid, the influence of the buoyancy and inertial forces on the 
airflow pattern has been investigated. By analyzing the results of the seven cases, it has been observed significant 
differences between the cases in the level of the streamlines and velocity vectors with the increase of the buoyancy 
effect, even the inversion of the flow when the buoyancy force is the predominant one. Moreover, besides the influence 
of the initial conditions, the predictions show evidence of dependency on the turbulence model for the cases with high 
buoyancy effect. This is an ongoing project; therefore further analysis must be carried out in order to obtain more 
conclusive information about the influence of initial conditions and turbulence models on the airflow pattern. 
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