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Abstract. In this paper, a systematic study of optimal trajectories for Earth-Moon flight of a space vehicle is presented. 

The optimization criterion is the total characteristic velocity and three dynamical models are used. The optimization 

problem has been formulated using the patched-conic approximation and two versions of the planar circular restricted 

three-body problem (PCR3BP). In all cases, the problem has been solved using a gradient algorithm in conjunction 

with Newton-Raphson method.  
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1.   INTRODUCTION 

 

In this paper, the problem of transferring a space vehicle from a circular low Earth orbit (LEO) to a circular low 

Moon orbit (LMO) with minimum fuel consumption is studied. The class of two impulse trajectories is considered: a 

first accelerating velocity impulse tangential to the space vehicle velocity relative to Earth is applied at a circular low 

Earth orbit and a second braking velocity impulse tangential to the space vehicle velocity relative to Moon is applied at 

a circular low Moon orbit (Miele and Mancuso, 2001). The minimization of fuel consumption is equivalent to the 

minimization of the total characteristic velocity which is defined by the arithmetic sum of velocity changes (Marec, 

1979).  

Three dynamical models are used to describe the motion of the space vehicle: the well-known patched-conic 

approximation (Bate et al, 1971) and two versions of the planar circular restricted three-body problem (PCR3BP). One 

version of PCR3BP assumes the Earth is fixed in space; this version will be referred as simplified version of PCR3BP 

and it is same one used by Miele and Mancuso (2001). The second version of PCR3BP assumes the Earth moves around 

the center of mass of the Earth-Moon system (Szebehely, 1967; Roy, 2005). In all cases, the optimization problem has 

one degree of freedom and can be solved by means of an algorithm based on gradient method (Miele et at, 1969) in 

conjunction with Newton-Raphson method (Stoer and Bulirsch, 2002). The analysis of optimal trajectories is carried out 

considering several final altitudes of a clockwise or counterclockwise circular low Moon orbit for a specified altitude of 

a counterclockwise circular low Earth orbit which corresponds to the altitude of the Space Station. The results are 

compared to the ones obtained by Miele and Mancuso (2001) who used the sequential gradient-restoration algorithm for 

solving the optimization problem (Miele et at, 1969).   

 

2.   OPTIMIZATION PROBLEM BASED ON PATCHED-CONIC APPROXIMATION 

 

In this section, the optimization problem based on the patched-conic approximation is formulated. A detailed 

presentation of the patched-conic approximation can be found in Bate et al (1971). The following assumptions are 

employed: 

 

1. The Earth is fixed in space; 

2. The eccentricity of the Moon orbit around Earth is neglected; 

3. The flight of the space vehicle takes place in the Moon orbital plane; 

4. The gravitational fields of Earth and Moon are central and obey the inverse square law; 

5. The trajectory has two distinct phases: geocentric and selenocentric trajectories. The geocentric phase 

corresponds to the portion of the trajectory which begins at the point of application of the first impulse and 

extends to the point of entering the Moon’s sphere of influence. The selenocentric phase corresponds to the 

portion of trajectory in the Moon’s sphere of influence and ends at the point of application of the second 

impulse. In each one of these phases, the space vehicle is under the gravitational attraction of only one body, 

Earth or Moon; 

6. The class of two impulse trajectories is considered. The impulses are applied tangentially to the space vehicle 

velocity relative to Earth (first impulse) and Moon (second impulse).  

 

An Earth-Moon trajectory is completely specified by four quantities: 0r  - radius of circular LEO; 0v  - velocity of 

the space vehicle at the point of application of the first impulse after the application of the impulse; 0  - flight path 

angle at the point of application of the first impulse and 0 - phase angle at departure. These quantities must be 
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determined such that the space vehicle is injected into a LMO with specified altitude after the application of the second 

impulse. It is particularly convenient to replace 0  by the angle 1  which specifies the point at which the geocentric 

trajectory crosses the Moon’s sphere of influence. 

Equations describing each phase of an Earth-Moon trajectory are briefly presented in what follows. It is assumed 

that the geocentric trajectory is direct and that lunar arrival occurs prior to apoapsis of the geocentric orbit. Figure 1 

shows the geometry of the geocentric phase.  
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Figure 1 – Geometry of the geocentric phase 

 

For a given set of initial conditions  000 ,, vr , energy and angular momentum of the geocentric trajectory can be 

determined from the equations 
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where E  is Earth gravitational parameter.  

From the geometry of the geocentric phase (Fig. 1), one finds 

 

1

22

1 cos2 SS DRRDr  ,     (3) 

 

111 sinsin rRS   ,     (4) 

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

where D is the distance from the Earth to the Moon,  SR  is the radius of the Moon’s sphere of influence. Subscript 1 

denotes quantities of the geocentric trajectory calculated at the edge of the Moon’s sphere of influence.  

From energy and angular momentum of the geocentric trajectory, one finds 

 

 11 2 rv E  ,     (5) 

 

11

1cos
vr

h
 .     (6) 

 

The selenocentric phase begins at the point at which the geocentric trajectory crosses the Moon’s sphere of 

influence. Figure 2 shows the geometry of the selenocentric phase for a clockwise arrival to LMO. Thus, 

 

SRr 2 ,     (7) 

 

Mvvv 12  ,     (8) 

 

where Mv  is the velocity vector of the Moon relative to the center of the Earth. Subscript 2 denotes quantities of the 

selenocentric trajectory calculated at the edge of the Moon’s sphere of influence. 
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Figure 2 – Geometry of the selenocentric phase 

 

From  Eq. (8), one finds 
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12 cos2   MM vvvvv ,     (9) 
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The upper sign refers to clockwise arrival to LMO and the lower sign refers to counterclockwise to LMO.  

The semi-major axis fa  and eccentricity fe  of the selenocentric trajectory are given by 
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where MvrQ 2

222   and M  is Moon gravitational parameter. 
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The second impulse is applied at the periselenium of the selenocentric trajectory such that the terminal conditions, 

before the impulse, are defined by 
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Equations (1) – (14) lead to the following two-point boundary value problem: For a specified value of 1  and a 

given set of initial parameters 0r  and 00  (the impulse is applied tangentially to the space vehicle velocity relative to 

Earth) determine 0v  such that the final condition fp rr
M
  is satisfied, where 0r  is the radius of LEO and fr  is the 

radius of LMO (both orbits, LEO and LMO, are circular). This boundary value problem can be solved by means of 

Newton-Raphson method (Stoer and Bulirsch, 2002).  

After computing 0v , the velocity changes at each impulse can be determined 
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The total characteristic velocity is then given by 

 

21 vvvTotal  .     (17) 

 

Note that the total characteristic velocity is a function of 1  for a given set of parameters  frr ,0, 00  . 

Accordingly, the following optimization problem can be formulated: Determine 1  to minimize Totalv . This 

minimization problem has been solved using a classic gradient method (Miele et at, 1969). The results are presented in 

Section 5. 

The total flight time of an Earth-Moon trajectory is given by 

 

ME ttT  ,     (18) 

 

where Et  is the flight time of the geocentric trajectory and Mt  is the flight time of the selenocentric trajectory. These 

times are calculated from the well-known equations times of flight of two-body dynamics as follows 
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with eccentric anomaly 1E  and hyperbolic eccentric anomaly 2F  obtained from 
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Since lunar arrival occurs prior to apoapsis of the geocentric trajectory,  1800 1E . The semi-major axis 0a  and 

eccentricity 0e  of the geocentric trajectory are given by 

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

0

0
0

2 Q

r
a


 ,        0

2

000 cos21  QQe , 

 

where EvrQ 2

000  . Recall that the impulses are applied at the periapses of the geocentric and selenocentric 

trajectories. 

 

3. OPTIMIZATION PROBLEM BASED ON THE SIMPLIFIED VERSION OF PCR3BP 

 

In this section, the optimization problem based on the simplified PCR3BP is formulated. A detailed presentation of 

this problem can be found in Miele and Mancuso (2001). The following assumptions are employed: 

 

1. The Earth is fixed in space; 

2. The eccentricity of the Moon orbit around Earth is neglected; 

3. The flight of the space vehicle takes place in the Moon orbital plane; 

4. The space vehicle is subject to only the gravitational fields of Earth and Moon; 

5. The gravitational fields of Earth and Moon are central and obey the inverse square law; 

6. The class of two impulse trajectories is considered. The impulses are applied tangentially to the space vehicle 

velocity relative to Earth (first impulse) and Moon (second impulse). 
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Figure 3 – Inertial reference frame Exy 

 

Consider an inertial reference frame Exy contained in the Moon orbital plane: its origin is the Earth center; the x-axis 

points towards the Moon position at the initial time 00 t  and the y-axis is perpendicular to the x-axis. Figure 3 shows 

the inertial reference frame Exy.  

In the Exy reference frame, the motion of the space vehicle (P) is described by the following differential equations: 
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where PEr  and PMr  are, respectively, the radial distances of space vehicle from Earth (E) and Moon (M), that is, 

   222

EPEPPE yyxxr   and    222

MPMPPM yyxxr  . Because the origin of the inertial reference frame Exy 

is the Earth center, the position vector of the Earth is defined by  0,0Er . The position vector of the Moon in the 

inertial reference frame Exy is defined by  MMM yx ,r . Since the eccentricity of the Moon orbit around Earth is 

neglected, the Moon inertial coordinates are given by 

 

   tDtx MM cos         tDty MM sin ,    (22) 

 

where M  is the angular velocity of the Moon, it is assumed constant and is defined by 3DEM   .  

The initial conditions of the system of differential equations correspond to the position and velocity vectors of the 

space vehicle after the application of the first impulse. The initial conditions ( 00 t ) can be written as follows: 

 

       0cos000 PEPEPEP rxx q ,     (23) 

 

       0sin000 PEPEPEP ryy q ,     (24) 

 

   
 

 0sin
0

00 1 PE

PE

E
PEP v

r
uu q














 ,     (25) 

 

   
 

 0cos
0

00 1 PE

PE

E
PEP v

r
vv q














 ,     (26) 

 

where 1v  is the velocity change at the first impulse,  
0

0 PEPE rr   and  tPEq  is the angle defining the position of the 

space vehicle in the inertial reference frame Exy at time t, more precisely the angle which the position vector Pr  forms 

with x-axis. It should be noted that  0PEr  and  0PEv  or, equivalently,  0Pr  and  0Pv  are orthogonal, because the 

impulse is applied tangentially to LEO, assumed circular.  

The final conditions of the system of differential equations correspond to the position and velocity vectors of the 

space vehicle before the application of the second impulse. The final conditions ( Tt f  ) can be written as follows: 
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where 2v  is the velocity change at the second impulse,  
fPMPM rTr   and  tPMq  is the angle which the position 

vector PMr  forms with x-axis. The upper sign refers to clockwise arrival to LMO and the lower sign refers to 

counterclockwise to LMO. Since the eccentricity of the Moon orbit around Earth is neglected, it follows from Eq. (22) 

that the components of the Moon inertial velocity at time T are given by the  

 

   TDTu MMM  sin        TDTv MMM  cos . 

 

The angle  TPMq  is free and can be eliminated. After the problem has been solved, the angle  TPMq  can be 

calculated from Eqns (27) and (28). So, combining Eqns (27) – (30), the final conditions can be put in the form: 
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The upper sign refers to clockwise arrival to LMO and the lower sign refers to counterclockwise to LMO. It should be 

noted that constraint defined by Eq. (33) is derived from the angular momentum considering a direct (counterclockwise 

arrival) or a retrograde (clockwise arrival) orbit around the Moon. 

The problem defined by Eqns (21) – (33) involves four unknowns 1v , 2v , T   and  0PEq  that must be 

determined in order to satisfy the three final conditions (31) – (33). Since this problem has one degree of freedom, an 

optimization problem can be formulated as follows: Determine 1v , 2v , T   and  0PEq  which satisfy the final 

constraints (31) – (33) and minimize the total characteristic velocity 21 vvvTotal  . This problem was solved by 

Miele and Mancuso (2001) using the sequential gradient-restoration algorithm for mathematical programming problems 

developed by Miele et al (1969).  

In this paper, the optimization problem described above is solved by means of an algorithm based on gradient 

method (Miele et at, 1969) in conjunction with Newton-Raphson method (Stoer and Bulirsch, 2002), similarly to the 

one described in the previous section for the problem based on the patched-conic approximation. The angle  0PEq  has 

been chosen as the iterative variable in the gradient phase with 1v , 2v  and T  calculated through Newton-Raphson 

method. The results are presented in the Section 5. 

 

4. OPTIMIZATION PROBLEM BASED ON THE CLASSICAL VERSION OF PCR3BP 

 

In this section, the optimization problem based on the classical version of PCR3BP is formulated. The assumptions 

employed in this formulation are the same ones previously presented in Section 3, except the Assumption 1 which must 

be replaced by the following one: Earth moves around the center of mass of the Earth-Moon system.  

Consider an inertial reference frame Gxy contained in the Moon orbital plane: its origin is the center of mass G of 

the Earth-Moon system; the x-axis points towards the Moon position at the initial time 00 t  and the y-axis is 

perpendicular to the x-axis. Figure 4 shows the inertial reference frame Gxy.  

In the Gxy reference frame, the motion of the space vehicle (P) is described by the following differential equations: 
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where PEr  and PMr  are, respectively, the radial distances of space vehicle from Earth (E) and Moon (M), that is, 

   222

EPEPPE yyxxr   and    222

MPMPPM yyxxr  . Because the origin of the inertial reference frame Gxy 

is the center of mass of Earth-Moon system, the position vectors of the Earth and the Moon are, respectively, defined by 

 EEE yx ,r  and  MMM yx ,r . Since the eccentricity of the Moon orbit around Earth is neglected, the Earth and 

Moon inertial coordinates are given by 
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where EM   . Here, the angular velocity of the Moon is defined by   3DMEM   . 
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Figure 4 – Inertial reference frame Gxy 

 

 

The initial conditions of the system of differential equations correspond to the position and velocity vectors of the 

space vehicle after the application of the first impulse. The initial conditions ( 00 t ) can be written as follows: 
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where 1v ,  0PEr  and  tPEq  have the same meaning previously defined in Section 3 and, from Eq. 

(35),  
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orthogonal, because the impulse is applied tangentially to LEO, assumed circular.  

The final conditions of the system of differential equations correspond to the position and velocity vectors of the 

space vehicle before the application of the second impulse, and, they are given by  Eqs (27) – (30) with the final 

position and velocity vectors of Moon obtained from Eq. (35), that is, given by: 

 

   T
D

Tx MM 


cos
1

 ,       T
D

Ty MM 


sin
1

 , 

 

   T
D

Tu M
M

M 



sin

1
 ,       T

D
Tv M

M
M 




cos

1
 . 
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Accordingly, the final conditions can be put in the same form defined by Eqs (31) – (33). 

Therefore, we have the same optimization problem defined in Section 3. The results are presented in the next 

section. 

 

5. RESULTS 

 

In this section, results are presented for lunar missions using the three approaches previously described and are 

compared to the results obtained by Miele and Mancuso (2001). The following data are used: 

 
235 skm 10986.3 E ,  233 skm 10903.4 M , 

km 384400D  (distance from the Earth to the Moon),    

km6378Ea (Earth radius),  km1738Ma (Moon radius),    

km 463 0 h (altitude of LEO),  km 300 ,200 ,100fh (altitude of LMO). 

 

Table 1 shows the results for lunar missions with clockwise arrival at LMO and Table 2 shows the results for lunar 

missions with counterclockwise arrival at LMO. The departure from LEO is counterclockwise for all missions. The 

major parameters that are presented in these tables are the velocity changes 1v  and 2v  at each impulse, the total 

characteristic velocity 21 vvvTotal  , the flight time of lunar mission T and the initial position of the space vehicle 

in the inertial reference frame Exy at the initial time 00 t defined by the angle  0sq .  

Results in Tables 1 and 2 show good agreement. It should be noted the excellent results obtained using the patched-

conic approximation model. In all missions, the patched-conic approximation model yields very accurate estimate for 

the first impulse in comparison to the results obtained using the PCR3BP models. For the second impulse, there exists a 

small difference between the results given by the patched-conic approximation model and the PCR3BP models.  

Tables also show a small difference in the flight time T and in the angle  0sq  calculated by the three approaches. 

We suppose that the difference between the values obtained in this paper and the values presented by Miele and 

Mancuso (2001) for the flight time T and the angle  0sq  calculated using the simplified PCR3BP model should be 

related to the accuracy in the integration of differential equations and in the solution of the terminal constraints. The 

algorithm based on gradient algorithm in conjunction with Newton-Raphson method, described in this paper, uses a 

Runge-Kutta-Fehlberg method of order 4 and 5, with step-size control, and, relative error tolerance of 1010  and 

absolute error tolerance of 1110  (Forsythe et al, 1977), and, the terminal constraints are satisfied with an error lesser 

than 810 . In all simulations, canonical units are used: 1 distance unit = Ea  and 1 time unit = Eea 3 , such that 

23 .u.td.u. 0.1E . The paper by Miele and Mancuso does not describe the accuracy used in the calculations. 

 

Table 1 – Lunar mission, clockwise LMO arrival, major parameters 

 

LMO altitude 

 km 
Model 

Totalv  

km/s 

1v  

km/s 

2v  

km/s 

T  
days 

 0sq  

deg 

 

100 

Patched-conic     111

Simplified PCR3BP 11  1  111

Classical PCR3BP   1  11

Miele and Mancuso (2001)   1  11

 

200 

Patched-conic    1 11

Simplified PCR3BP     111

Classical PCR3BP     11

Miele and Mancuso (2001)     11

 

300 

Patched-conic     11

Simplified PCR3BP 1    1111

Classical PCR3BP    1 111

Miele and Mancuso (2001)     11
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Table 2 – Lunar mission, counterclockwise LMO arrival, major parameters 

 

LMO altitude 

 km 
Model 

Totalv  

km/s 

1v  

km/s 

2v  

km/s 

T  
days 

 0sq  

deg 

 

100 

Patched-conic     11

Simplified PCR3BP   1  11

Classical PCR3BP   11  111

Miele and Mancuso (2001)   11  11

 

200 

Patched-conic 1    11

Simplified PCR3BP 1    11

Classical PCR3BP    1 111

Miele and Mancuso (2001)     11

 

300 

Patched-conic 1    11

Simplified PCR3BP     111

Classical PCR3BP     111

Miele and Mancuso (2001)     11

 

 
Finally, note that: 

 

1. Lunar missions with clockwise LMO arrival spend more fuel than lunar missions with counterclockwise LMO 

arrival; 

2. The flight time is nearly the same for all lunar missions with clockwise LMO arrival and for lunar missions 

with counterclockwise LMO arrival, independently on the model used in the analysis. 

3. The first change velocity 1v  is nearly independent of the LMO altitude. 

4. The second change velocity 2v  decreases with the LMO altitude. 

5. The flight time for lunar missions with clockwise LMO arrival is larger than the flight time for lunar missions 

with counterclockwise LMO arrival. 

6. For the PCR3BP and patched-conic approximation models, the angle  0sq  varies with the LMO altitude for 

all lunar missions. 

 

Some of these general results are quite similar to the ones described by Miele and Mancuso (2001). 

 

 

6. CONCLUSION 

 

In this paper a systematic study of optimal trajectories for Earth-Moon flight of a space vehicle is presented. The 

optimization criterion is the total characteristic velocity. The optimization problem has been formulated using the 

patched-conic approximation or two versions of the planar circular restricted three-body problem (PCR3BP) and has 

been solved using a gradient algorithm in conjunction with Newton-Raphson method. Results are presented for the 

same lunar missions described by Miele and Mancuso (2001). All models show that lunar missions with clockwise 

LMO arrival spend more fuel than lunar missions with counterclockwise LMO arrival. Finally, note that all optimal 

trajectories presented in this paper involve short flight time (about 4.5 to 5.0 days) and they corresponds to local minima 

of the total characteristic velocity; but, other local minima exist with larger flight time (Yagasaki, 2004) that can lead to 

different conclusions.  
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