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Abstract. In this paper an analytical first order solution for optimal low-thrust limited power transfers (no rendezvous) 

between coplanar orbits with very small eccentricities in an inverse-square force field is presented. This analytical 

solution is determined through canonical transformation theory and is expressed in terms of non-singular elements. A 

preliminary analysis of interplanetary transfers is performed and the analytical results are compared to the ones 

obtained through a numerical technique. 
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1. INTRODUCTION 

 

The purpose of this paper is to present an analytical study of optimal low-thrust limited power trajectories for 

transfers (no rendezvous) between coplanar orbits very small eccentricities in an inverse-square force field. The study of 

these transfers is particularly interesting because the orbits found in practice often have a small eccentricity and the 

problem of transferring a vehicle from a low orbit to a high orbit is frequently met. Besides, the analysis has been 

motivated by the renewed interest in the use of low-thrust propulsion systems in space missions verified in the last two 

decades (Edelbaum, 1965; Marec and Vinh, 1977; Marec, 1979; Haissig et al, 1992; Kechichian, 1996, 1997; Vasile et 

al, 2000; Sukhanov and Prado, 2001; Kiforenko, 2005).  

The optimization problem associated to the space transfer problem is formulated as a Mayer problem of optimal 

control with “Cartesian” elements – radial component of position vector and radial and transverse components of 

velocity vector – as state variables. After applying the Pontryagin Maximum Principle (Pontryagin et al, 1962), 

successive Mathieu transformations are performed and suitable sets of orbital elements are introduced. The short 

periodic terms are eliminated from the maximum Hamiltonian function through an infinitesimal canonical 

transformation built through Hori method (Hori, 1966) – a perturbation canonical method based on Lie series. The new 

Hamiltonian function, resulting from the infinitesimal canonical transformation, describes the extremal trajectories 

associated with the long duration maneuvers for simple transfers (no rendez-vous). The separation of variables 

technique is applied to solve the Hamilton-Jacobi equation associated to the average canonical system and closed-form 

analytical solution is obtained. A first order analytical solution for the non-singular orbital elements is then obtained 

applying the transformation equations of the algorithm of Hori method. 

Finally, the analytical solution is applied in preliminary analysis of interplanetary transfers and the results are 

compared to the ones obtained through a numerical technique. 

 

2. OPTIMAL LOW-THRUST TRAJECTORIES 

 

Low-thrust power-limited systems or, simply, LP system, are characterized by low-thrust acceleration level and high 

specific impulse (Marec, 1979). The ratio between the maximum thrust acceleration and the gravity acceleration on the 

ground, 0max g , is between 10
4

 and 10
2

. For such system, the fuel consumption is described by the variable J 

defined as 
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where  is the magnitude of the thrust acceleration vector , used as control variable. The consumption variable J  is a 

monotonic decreasing function of the mass m of the space vehicle, 

  
















0

max

11

mm
PJ ,          (2)  

                                            

where Pmax is the maximum power and 0m  is the initial mass. The minimization of the final value of the fuel 

consumption Jf   is equivalent to the maximization of fm . 

The optimization problem concerning with simple transfers (no rendezvous) between coplanar orbits will be 

formulated as a Mayer problem of optimal control by using Cartesian elements as state variables. At time t, the state of 
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a space vehicle M is defined by the radial distance r from the center of attraction, the radial and transverse components 

of the velocity, u and v, and the fuel consumption J. The geometry of the transfer problem is illustrated in Fig.1. 

In the two-dimension optimization problem, the state equations are given by 
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where   is the gravitational parameter, R and S are the components of the thrust acceleration vector in a moving frame 

of reference, that is, sr SR eeΓ  , with the unit vector re  pointing radially outward and the unit vector se  

perpendicular to re  in the direction of the motion and in the plane of orbit.  

The optimization problem is stated as: it is proposed to transfer a space vehicle M from the initial conditions at 

00 t ,  

 

0)0( u    1)0( v    1)0( r    0)0( J ,         (4) 

 

to the final state at the prescribed final time ft , 

 

0)( ftu    ff rtv )(    ff rtr )( ,            (5) 

 

such that fJ  is a minimum. In the formulation of the boundary conditions, all variables are expressed in canonical 

units, such that 1 .  
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Figure 1.  Geometry of transfer problem. 

 

 

Following the Pontryagin Maximum Principle (Pontryagin et al, 1962), the adjoint variables u , v , r  and J   are 

introduced and the Hamiltonian function  SRJrvuH Jrvu ,,,,,,,,,   is formed using the right-hand side of Eqs (3),  
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The control variables R and S must be selected from the admissible controls such that the Hamiltonian function 

reaches its maximum along the optimal trajectory. Thus,  
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Since J  is a first integral and 1)( fJ t (this results follows from transversality condition) one finds 

 

1)( tJ .      (8) 

 

Thus, from Eqs (7), the optimal thrust acceleration is given by 

 

uR *     vS * .         (9) 

 

Introducing these equations into the Eq. (6), one finds 
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The problem of determining a first order analytical solution of the system of differential equations governed by the 

Hamiltonian *H  is solved by means of the theory of canonical transformations as it will be described in the next 

section.  

 

3. FIRST ORDER ANALYTICAL SOLUTION 

 

Consider the Hamiltonian function describing a null thrust arc in the two-dimensional formulation of the 

optimization problem: 

 





r

v

r

uv

rr

v
u vur 















2

2

Η .     (11) 

  

Note that H is obtained from Eq. (6) taking 0 SR  and adding the last term concerning to the differential 

equation of the angular variable , which defines the position of the space vehicle with respect to a reference axis in the 

plane of motion. This variable is important for rendez-vous problems and plays no special role for simple transfer 

problems, but it is necessary to define the canonical transformations described below.  

In the transformation theory described in the next paragraphs, it is assumed that the Hamiltonian *H  is augmented 

in order to include term associated to the angular variable ; that is, 
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H is the undisturbed part of *H  and plays a fundamental role in the theory. 

The general solution of the system of differential equations governed by the Hamiltonian H can be expressed in 

terms of a fast phase and is given by (da Silva Fernandes, 1999a, 1999b) 
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   ,     (13) 

 

where p is the semi-latus rectum, e is the eccentricity,  is the pericenter argument and f  is the true anomaly (fast 

phase) and ),,,(  fep  are adjoint variables to ),,,( fep .  

Equations (13) define a Mathieu transformation, 
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The undisturbed Hamiltonian function H is invariant with respect to this canonical transformation and is written in 

terms of the new variables as 
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Equations (13) have singularities for circular orbits ( 0e ). In order to avoid this drawback, a set of nonsingular 

elements is introduced. The transformation equations between the singular orbital elements and the nonsingular ones are 

given by 
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These equations define a Lagrange point transformation. Following the properties of generalized canonical systems, 

the Jacobian of the inverse of this transformation must be computed in order to get the transformation equations 

between the corresponding adjoint variables. Thus, 
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Equations (15) and (16) define a new Mathieu transformation between singular and nonsingular elements, 
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Substituting Eqns (15) and (16) into the Eqns (13), one finds 
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Equations (17) are valid for all orbits. For quasi circular orbits, that is, orbits with very small eccentricities, these 

equations can be greatly simplified if higher order terms in eccentricity are neglected. Considering first order terms in 

eccentricity, one finds 
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3an   is the mean motion and M  is the mean latitude.  

Introducing Eqns (18) into the expression for *H  and considering first order terms in eccentricity, it results 

 

   

   

  .cos3sin322sin
4

1
2cos

4

1
cos2

4

7

3sin3cos2cos
4

3
sincos

4

5

2sin
4

1
2cos

4

1
sin2

4

7
3cos23sin22sin

2

3
cos2sin2

3sin3cos2cos
4

3
sincos

4

5

sen2cos22cos42sin4sin4

2cos42sin4cos4sin2cos212
1

2

2

2

22

22

*

































hkkhh

khkh

hkkkhkh

khkh

ahakakaha

ahakaakh
an

nH

k

k

hkh

h

aka

haa






















































 

     (19) 

 

In order to get a first order analytical solution for the system of differential equations described by the maximum 

Hamiltonian function *H , defined by Eqn (19), Hori method (Hori, 1966) is applied.  

According to da Silva Fernandes (2009a), the new Hamiltonian 1F  and the generating function 1S  are given by the 

following equations: 
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Terms factored by   have been omitted in equations above, since only transfers (no rendez-vous) are considered. 

Prime denotes the new variables resulting from the canonical transformation. 

The general solution of the canonical system governed by the new Hamiltonian function 1F  can be obtained 

applying Hamilton-Jacobi theory as described in (da Silva Fernandes, 2009a). For a given set of initial conditions, one 

gets 
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0hh   ,     (26) 

 

0kk   ,     (27) 

 

with C and E  given in terms of the initial conditions by 

 
222

00 khC    

 

    222

00 000
584 khaaaμ  E . 

 

The initial conditions for the state variables (generalized coordinates) are given by   00 aa  ,   00 hh   and   00 kk  . 

Equations (22) through (27) represent the solution of the canonical system concerning the problem of optimal long 

duration low-thrust limited-power transfers between elliptic coplanar orbits with very small eccentricities in an inverse-

square force field.  

For maneuvers with arbitrary duration, the periodic terms must be included. Following Hori method (Hori, 1966) 

and applying the initial conditions, one gets a first order analytical solution: 
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Equations (28) – (30) represents a complete first order analytical solution, including short period terms, for optimal 

low-thrust limited-power trajectories concerning with the transfer problem between coplanar orbits with very small 

eccentricities an inverse-square force field. This solution involves three unknowns, the initial values of the adjoint 

variables, which must be determine to satisfy the two-point boundary value problem of going from the initial orbit 

 ),,: 0000 khaO to the final orbit  ),,: ffff khaO . This point boundary value problem can be solved through a 

Newton-Raphson algorithm as described in da Silva Fernandes and Carvalho (2008) for transfers between arbitrary 

elliptical coplanar orbits. 
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4. PRELIMINARY ANALYSIS OF INTERPLANETARY MISSION 

 

In this section, the analytical first order solution previously derived is applied in a preliminary analysis of 

interplanetary missions considering Earth-Venus, Earth-Mars and Earth-Asteroids belt transfers. The following 

assumptions are employed: 

 

1. The orbits of the planets are circular; 

2. The orbits of the planets lie in the plane of the ecliptic; 

3. The flight of the space vehicle takes place in the plane of the ecliptic; 

4. Only the heliocentric phase is considered; that is, the attraction of planets is neglected. 

 

Table 1 shows a comparison between the results given by the analytical solution with numerical results obtained 

through a neighboring extremals algorithm based on state transition matrix (da Silva Fernandes, 2009b). This algorithm 

is applied to solve the two-point boundary value problem determined by the application of the Pontryagin Maximum 

Principle to the Mayer formulation of the optimization problem with the original state variables r, u, v and J , presented 

in Section 2. One sees the good agreement between the analytical and numerical results, mainly for transfers with long 

duration and short amplitude. 

 

Table 1 – Comparison between and numerical results (in canonical units) 

 

0rr f  Duration 
analyticalJ  numericalJ  

0.727 (Venus) 25 0.0005973 0.0005985 

50 0.0002987 0.0002990 

1.523 (Mars) 25 0.0007208 0.0007246 

50 0.0003604 0.0003609 

2.500 (Asteroids) 25 0.0027018 0.0028897 

50 0.0013509 0.0013859 

 
5. CONCLUSION 

 

In this paper an analytical first order solution for optimal low-thrust limited power trajectories for simple transfer 

(no rendezvous) between circular coplanar orbits with very small eccentricities in an inverse-square force field is 

presented. This analytical solution has been obtained through classical mathematical methods of Analytical Mechanics 

– canonical transformation theory, Lie-Hori perturbation method and separation of variables technique – and is 

expressed in terms of non-singular elements. A preliminary analysis of interplanetary transfers is performed and the 

analytical results are compared to the ones obtained through a numerical technique. 
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