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Abstract. We develop a high-order finite element interpolation scheme for use in incompressible fluid flow simulations
with a semi-lagrangian description of movement. Attention is given to obtain a best fit evaluation of the relevant advected
variables from departure points of particle trajectories, evolving according to evolution laws of the continuum mechanics,
like the Navier-Stokes equations. Third order polynomials along with gradients evaluated at the nodes of the adopted
Zienkiewicz-type nonconforming element define the corresponding set of degrees of freedom that assure a high order
representation of the sougth solution. By including a numerical residual in the shape functions we seek to minimize
deviations observed on the approximation of linear functions in the domain. Our numerical experiments show that the
Zienkiewicz-type element used in our work might compromise the ability to approximate linear functions on the benefit of
a better representation of more complex functions. We present the first numerical results concerning the simulation of the
evolution of a three-dimensional Lamb-Oseen vortex as a step on the validation of the proposed scheme. The numerical
experiments were made on a tetrahedrical grid of elements.
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1. INTRODUCTION

Semi-Lagrangian Methods, also named Characteristic Methods, were established from meteorologic sciences in the
framework of numerical climatic predictions, due to its applicability to atmospherical fluid flow simulations and the abil-
ity of building on a fixed computational meshing arrangement.These methods gather the potencialities existing between
the Lagrangian and Eulerian movement descriptions according to (Staniforth and Côté, 1991) and (Smolarkiewicz and
Pudykiewicz, 1992). Ever since, the insertion of Semi-Lagrangian methods into another scientific ramifications turned
into a feasible experimental task. Combination with the Finite Element Method for solving problems governed by dif-
ferential equations which encompass advective properties, for instance, dates back to the pioneering work introduced
by (Pironneau, 1982). Since these results were very cohesive, the implementation of computational codes binding the
Navier-Stokes equations to the semi-lagrangian approach could be, later, treated in a more specific way, with emphasis
given to the interpolation mechanisms (Xiu and Karniadakis, 2001). It is well known that one of the main characteristics
of successefull semi-lagrangian schemes is indeed a interpolation scheme suitable to evaluate variables (scalar or vecto-
rial) at the departure points (inherent to the method), or “foot” of each trajectory. Considering that the characteristics
are the curves of solution of differential equation dX

dτ (x, τ ; t) = u(x, τ ; t), where x = (x1, x2, x3) is a point of domain
Ω = R3, u = (u, v, w) is the velocity field distributed over this domain, τ = ∪n=N−1

n=0 [nt, (n + 1)t] is the time and t
is a particular time of τ . The departure point of the each characteristic is the point xd ocuppied by the particle χ when
τ = nt, n = 0, 1, 2, . . . , N − 1. Semi-Lagrangian Methods are then concerned to perform a backward-in-time inte-
gration along the characteristic, so that the particle χ ocuppying the position at X(xd, τ ;nt) is advected to the position
at X(xa, τ ; (n + 1)t), where xa belongs to the fixed computational mesh. In the effect of the backward integration, xd
might not match a mesh point, hence, an interpolation is needed to evaluate the variables at that point.

2. FINITE ELEMENT DISCRETIZATION AND MATHEMATICAL BACKGROUND

In bidimensional space, the Zienkiewicz element is a triangular element that uses the values of the function and their
first order derivatives at vertices as degrees of freedom. According to (Ciarlet, 2002), the expansion of this element to
tridimensional space is the Hermite’s element TE16 with a particular interpolation space made up of cubic polynomials.
TE16 has been the terminology used in (Wang and Xu, 2006a) and (Wang and Xu, 2006b) to explain that the directional
gradients are calculated on the edges of tetrahedra from a vertex and pointing to the adjacents by invoking sixteen points
of evaluation on each element, of which twelve are gradients and four are function values. Z-Type (Zienkiewicz-Type,
for brevity) elements form a class of nonconforming finite elements and they have been explored for applications of high-
order problems, like the fourth-order elliptical ones. Nonconforming elements has been conceiving a strategy to reduce
the order of polynomials and the degrees of freedom responsible for the high computational cost of practical applications
implemented with conforming elements. Continuity requirements influence this expense as well as the informations about
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gradients of the functions. By using gradients information, we intend find a higher interpolation to the semi-lagrangian
scheme developed here.

Let Ω = R3 be our problem domain, Γ = ∂Ω its boundary, T a tetrahedralization of Ω, T ∈ T the mesh elements
with vertices vi, i = 1, 2, 3, 4. Face centroids are the points vijk = vi + vj + vk/3 (with cyclic permutation on i, j, k);
however we mention the face centroids here just for understanding. They will not be used directly in our calculations,
but the centroid of element, to be introduced later. Finally, f is an arbitrary (at first glance) 3-fold function - we will
later associate f to the fluid flow velocity field - to be approximated. Velocity is the most important variable in our
implementation.

Each T ∈ T suffers an affine map to a tetrahedrical pattern element T̂ , with barycentric coordinates λi according to
the common coordinate change process in finite elements codes. Following the compact notation from (Ciarlet, 2002),
we denote by: v̂i, the vertices of the pattern tetrahedra; f(v̂i), the evaluation of function f at the vertices and ∇f(v̂i) the
evaluation of the gradients at the vertices, with i = 1, 2, 3, 4 in all. Intentionally, v̂1 = (1, 0, 0), v̂2 = (0, 1, 0), v̂3 =
(0, 0, 1) and v̂4 = (0, 0, 0).

TE16 is the element (K,P,N ) that may be identified as: 1) K = T ; 2) P = Π
′

3; 3) N = {f(vi),∇f(vi), 1 ≤
i ≤ 4}, where the polynomial space Π

′

3 := p ∈ Π3(T ) |ψijk(p) = 0. In turn, Π3(T ) is the set of the all polynomials with
degree ≤ 3 over T and:

ψijk(f) = 6f(vijk)− 2
∑
l=i,j.k

f(vl) +
∑
l=i,j.k

∇f(vl)(vl − vijk), ∀f ∈ C1T. (1)

Once we are interested in directional gradients, we look at this element. Particularly, our focus is in the shape functions
raising its correspondent interpolant:

IT f =

4∑
i=1

(3λ2
i −2λ3

i + 2λi
∑

1≤j<k<4
j,k 6=i

λjλk)f(vi) +
1

2

∑
1≤i6=j<4

λiλj(1 +λi−λj)∇f(vi)(vj−vi), ∀f ∈ C1(T ) (2)

Shape functions associated to derivatives hold the propriety of vanishing on each vertice of tetrahedra. Moreover, they are
cubic, propping a considerable order for interpolation.

Now, we address ourselves to explain about our mesh element: the MINI 3D. Strongly used for solving problems
coupling velocity and pressure, it has tetrahedrical geometry like TE16 one, however it differs on the degrees of freedom
set and on the shape functions space. For now, we will postpone more details about this element, suggesting reading of
(Arnold et al., 1984). We could describe it as the element (Kmini,Pmini,Nmini) with Kmini ≡ K and Pmini 6≡ P . In
contrast, it is enough know the degrees of freedoms set of MINI 3D element, i.e., Nmini = {f(vi), 1 ≤ i ≤ 5; p(vi), 1 ≤
i ≤ 4}. In the MINI 3D, velocity is evaluated at five points, all the four vertices more the centroid (of element), whereas
the pressure p is evaluated only at the vertices. Our interpolation scheme lifts up from a structuring linking pieces of
these two elements. It would be as if we coupled each other, in the sense of handling their capabilities. From the MINI
element,we take the geometry, while from TE16 we take a part of its interpolant. Figure 1 shows us a simple configuration
of elements coupling. Concentration is a scalar field present in the simulations.

Figure 1. 3D MINI element with evaluation of gradients

3. BACKWARD-IN-TIME INTEGRATION AND INTERPOLATION SCHEMES

As we have introduced in the principle, to integrate the particle trajectory backward-in-time we start from an arrival
point xa whose velocity at that position is the reference information that we have to proceed to the approximation. As
the simulation runs, we evaluate the velocity field on early time to obtain it on a future time. Semi-lagrangian approach is
embedded in treatment of convective term type v · ∇v. We will see ahead the material derivative of simulated equations
claim to be approximated by:

Dv

Dt
=

v(n+1)t − vntd
∆t

, (3)
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where the subscript d indicates the evaluation of velocity at the departure point. This is the heartwood of discrete version
of Semi-Lagrangian approach.

Our integration scheme computes the trajectory by doing sucessive corrections through internal iterations, pursuiting
the original curve by means of retilinear approximations. In the work by (dos Anjos, 2007), the semi-lagrangian integra-
tion was made through a simple straight line on each step time. Here, we complement the idea, but remaking it several
times on space as far as a convergence criterion can be satisfied. Basically, the computational algorithm works as follows:

i) For each point belonging to the mesh, find a departure point;
ii) Evaluate the velocity at departure point;

iii) Evaluate the mean velocity between the mesh point velocity and the departure point one;
iv) Repeat internal iterations as far as the convergence criterion can be satisfied;
v) Go ahead to the next step time.

Considering x a point of some T ∈ T ; tn = n∆t the step time and a(x, tn) the velocity at point x and time tn, if we
use a mathematical lexicon, we expound the previous algorithm in the following context:

i) Find xkd ≡ xγn,k ∈ T γ such as x = xkd + a(x, tkn)∆t, where the parameter γ assumes values i, e or v just to identify,
in this sequel, if each departure point xd either is a point from interior of element T γ , or an edge point, or if it matchs
a vertex; k is referred to as a current internal iteration;

ii) Calculate a(xd, t
k
n) by interpolation (discussed below);

iii) Calculate the mean velocity ā(xmean, t
k
n) = 1

2 [x(xd, t
k
n) + x(x, tkn)] at the midpoint xmean;

iv) Do k = k + 1 while holds: ‖x̄(xmean, t
k+1
n )− x̄(xmean, t

k
n)‖ < δ, for δ small. Nicely, we have chosen δ = 10−8;

v) Take x̄(xmean, t
K
n ) ≡ a(xd, tn) after K internal iterations as the final velocity obtained on the step time n∆t to

proceed to the velocity field calculus a(x, tn+1) = Mqa(xd, tn) on the next step, given all the matrices Mq operating
according to the finite element formulation. (To be exposed in Sec. 4.).

The sketch of Fig. 2 shows us how the internal iterations work for approximating the trajectories. We select a mesh
partition at an arbitrary time step. Tetrahedra with coarser edges represents T γ with its vertices. We have ommited the
mesh partition centroids for visual clarity, leaving v5 as centroid of the highlighted element. The dash line traveling
from the vertex v1 and ending at the point xa is the particle trajectory at that interval time ∆τ ; the bold points upon
the vertices represent the velocity evaluations at that vertices; the points filled in white represent the sucessive departure
points found after carrying out several internal iterations. Internal iterations happen during one step time as far as the
convergence. Numbers 1, 2 and 3 at the line boards to the left indicate three internal iterations corresponding to their
respective backward integration: dash-point line (first); dash-point-point line (second) and dash-point-point-point line
(third). Each line of these is a correction for the original trajectory in order to pursuit the maximum adjust for it. After all,
it is important mention that our scheme uses only spacial approximation, do not taking advantage of velocity evaluations
at any intermediary times, but at intermediary positions. In (Bonaventura, 1997), the fractional way of thinking the
evaluations in intermediary times is very well studied under the finite differences scope.

Figure 2. Internal iterations being performed on a tetrahedrical mesh.

We consider our approach a thread from what is provided by the introduction of gradient recovery and post-processing
techniques into finite elements approximations as it is declared by (Silva et al., 2004). In this paper, the applications were
addressed to structures and stress studies, however the references therein showed itself theorically and historically useful.
Higher order polynomials assume a strong relation with those techniques in order to yield good interpolation schemes.

Mapping each T ∈ T to T̂ require a Jacobian transformation. Once the barycentric coordinates λl are dominant
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over T̂ , their gradients will be given by ∂λl

∂xi
, with 1 ≤ l ≤ 4, 1 ≤ i ≤ 3, following the variables change due to the

transformation. By interplaying the usual finite element linear interpolation and the shape functions from the second term
of TE16 element IT interpolant, we developed a new interpolant, I3, performing the sum:

I3f =

4∑
l=1

f(vl)λl +

3∑
i=1

4∑
j=1

4∑
k=1

(
∂f

∂xi
(vj)−

4∑
l=1

f(vl)
∂λl
∂xi

)
ϕ(i, j, k) (4)

where

ϕ(i, j, k) =
1

2
(xik − xij)(λjλk + λ2

jλk − λjλ2
k) (5)

is the same shape function as the second term of TE16 element; the labels x with their subscripts are associated with the
positions of each vertex v, e.g., vl = (xl1, xl2, xl3).

The l.h.s. of Eq. 4 has a subscript 3 recalling the Hermite’s cubics figuring on the r.h.s. The r.h.s., in turn, is drawn up
by a linear part more a term relating to the gradients. Then, we can rewrite the Eq. 4 like:

I3f = ψlin(f) + ψgrad(f) (6)

In case of the function to be interpolated has a linear behavior, ψgrad(f) vanishes, since the gradients will be constant
and the difference inside parenthesis will be null. Thus ψlin(f) undertakes carrying out the interpolation. Otherwise,
when the gradients are nonzero, ψgrad(f) acts interpolating the function by adjusting the approximation up to third order.

Other interpolation scheme investigated here results from a approach much more convincent relating to the Z-type
expression of finite elements. In (Andreev and Racheva, 2010), a new Z-type triangular element was proposed, in which
they modified the Zienkiewicz element by adding an integral value to its degrees of freedoms set. However, the shape
functions of the Zienkiewicz triangle still were declared there. We extended these functions to tridimensional space
applying them to the tetrahedra.

4. NUMERICAL RESULTS

Our interpolation scheme was developed to be applied for solving the 3D incompressible Navier-Stokes equations
coupled to the transport equation of a chemical species, written compactly in adimensional vectorial form as:

∇ · v = 0 (7)
Dv

Dt
= −1

ρ
∇p+

1

Re
+ ν∇ · (∇v +∇vT ) +

1

Fr2
g (8)

Dc

Dt
=

κ

ReSc
∇2c (9)

Above, v = (u, v, w) is the velocity field, ρ the density, p the pressure field, ν the viscosity and c = c(x) the chemical
species concentration field spread over domain. Coefficients Re, Sc, Fr and κ are, respectively, the Reynolds, Schmidt,
Froude numbers and the chemical species diffusion. For simulations we will neglect the gravitational term g.

Taking account of all tools concerning to a finite element formulation, it is relevant to do some definitions more. Thus,
letH1 and L2 be an Hilbert and Lebesgue, in this sequel, functional spaces so that:

H1(Ω) := {w ∈ L2(Ω) | ∂w
∂xi
∈ L2(Ω), i = 1, 2, 3}

and

L2(Ω) :=

{
w := Ω → R3 |

(∫
Ω

|w|2 dΩ

)1/2

<∞

}
.

These functional spaces are necessary to create approximation subspaces and they figure in Adams (1975). Now let S and
V be the trial functions space and the weight functions space, respectively, given by:

S := {u ∈ H1(Ω) |u = uD on ΓD}

and

V := {w ∈ H1(Ω) |w = 0 on ΓD}

with ΓD being a Dirichlet-type boundary.
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After discretizing the equations by finite elements and weakening them through Galerkin’s method, we are conduced
to a matricial system of ordinary differential equations. Writting it on bilinear form, we declare the statement: we should
find solutions v(x, t) ∈ V ⊂ H1(Ω), p(x, t) ∈ P ⊂ L2(Ω) and c(x, t) ∈ Ψ ⊂ L2(Ω) so that for any w ∈ V0, q ∈ P0

and r ∈ Ψ0 obtain:

m(
Dv

Dt
,w) +

1

Re
k(ν;v,w) + g(p,w) = 0 (10)

d(q,v) = 0 (11)

m(
Dc

Dt
, r) +

1

ReSc
k(κ; c, r) = 0 (12)

with subscript 0 meaning that the set functions must vanish on the boundary and the matrices given by

m(
Dv

Dt
,w) =

∫
Ω

[
Dv

Dt

]
·w dΩ

k(ν;v,w) =

∫
Ω

[
ν(∇v +∇vT )

]
: w dΩ

g(p,w) =

∫
Ω

p [∇ ·w] dΩ

d(q,v) =

∫
Ω

[∇ · v] q dΩ

m(
Dc

Dt
, r) =

∫
Ω

[
Dc

Dt

]
r dΩ

k(κ; c, r) =

∫
Ω

[κ∇c]∇rT dΩ

We emphasize that Galerkin’s method is obtained by doing successive integration by parts in the weighted equations, at
which the weight functions space is taken as the same as the trial functions space one.

For simulations, we have chosen a finite element mesh similar to a flatten cube. Mesh adimensional sizes are given by
l× l×h, where l in respecting to x, y and z directions. z is taken to be thin equivalent to a unique layer of tetrahedras. In
order to compare details of trajectory between two semi-lagrangian methods - developed in our research group -, we have
selected the Lamb-Oseen vortex (Delbende et al., 2004), that is a solution for the Navier-Stokes equations. Curvilinear
behavior of trajectories help us to visually identify improvments of approximation. Vortex velocity field drives to steady-
state after a reasonable time has elapsed. In a cylindrical coordinates frame, the vortex velocity profiles read:

vr(r, τ) = 0

vθ(r, τ) =
γ

2πr

[
1− exp

(
−
(

r

rc(τ)

)2
)]

rc(τ) =
√

4ντ

vz(r, τ) = 0

Above, τ represents time, γ the vortex circulation, ν the cinematic viscosity of fluid under issue and rc the marked
radius at the vortex centre. Vortex is inserted as initial condition at the mesh centre. Outflow boundary conditions were
imposed so that vortex disperse freely. Mathematically, we have Υ = Ω × τ , with Ω = [0, l] × [0, l] × [0, h] and
τ = [t0, t]. RegionsRv andRc spanning mesh interior points receive velocity values and chemical concentration values,
i.e., x ∈ Rv : d(x,xc)≤rref belonging to the circle with radius rref and center xc set velocity initial condition, whereas
x ∈ Rc |z=zmax

z=zmin
: (x−xc)2

a2 + (y−yc)2

b2 = 1 a > b is a concentration elliptical cylinder immersed inside vortex. We term
SLold (the old one) and SLnew (the new one) our two developed numerical approximation Semi-Lagrangian methods.

As we can see through the Table 1, as one reduce the h-scale factor controlling the element size, the errors of both
methods decrease, however the SLnew method overcomes the SLold method, begetting a faster convergence. Visual
interpretation is depicted on the Fig. (3) below. Relative error calculations were performed with the discretized L2-norm
formulae:

Errrel =

{∫
∑

n

‖ u− uh ‖2n
‖ u ‖2n

} 1
2

where u and uh are the velocity fields evaluations of exact and approximated solutions for each node n of mesh.
Results follow in the sequel. Each pair of figures is the comparison between the two methods. The new method is

represented by the inferior ones. On a mesh with 3200 vertices and 9120 elements, we have simulated the L-O vortex
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Figure 3. Plot: size element x relative error.

Table 1. Relative error comparing the two methods: SLold and SLnew.

Results
h-scale factor Errrel(SLold) Errrel(SLnew)

0.01 1.667861084595163e-05 7.943645528011063e-09
0.02 6.647245686466337e-05 6.417057562052918e-08
0.05 4.108750003087340e-04 1.031537920333554e-06
0.1 0.001612481360943 8.629434633851314e-06
0.2 0.006195544510231 7.478380845597963e-05
0.5 0.033801035449609 0.001392130563733
1 0.104694748165916 0.012732664020225
2 0.307177218262305 0.098439911933337
5 2.070612902923886 1.275436243896732

keeping the Reynolds number fixed at 100 and varying the CFL number as 1,2,3 and 5. We take shots of some iterations
among a set of 100. Main difference between the methods is nicely observed from the colors.

Figures (4) and (5) are related to CFL = 1; (6) and (7) are related to CFL = 2; (8) and (9) are related to CFL = 3; (10)
and (11) are related to CFL = 5:

Figure 4. CFL = 1, Re = 100, iteration 34.

Figure 5. CFL = 1, Re = 100, iteration 34.

Figure 6. CFL = 2, Re = 100, iteration 16.
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Figure 7. CFL = 2, Re = 100, iteration 16.

Figure 8. CFL = 3, Re = 100, iteration 47.

Figure 9. CFL = 3, Re = 100, iteration 47.

Figure 10. CFL = 5, Re = 100, iteration 4.

Figure 11. CFL = 5, Re = 100, iteration 4.

5. CONCLUSION

Third-order approximation guaranteed by the Z-type interpolation have provided a better representation of the finite
element solution originating from the simulated equations. This mayor result of our semi-lagrangian scheme has sustained
the relevance of developing more suitable numerical methods related to the wide scope emerging from the finite element
applications. Remarkable difference between the SLold and the SLnew methods concerns to the order of error. While
the linear approximation have evidenced a second-order error, the Z-Type interpolation have attained one more order,
empowering deeper studies. Additional results also are due to the internal iterations scheme, which provides a higher
precision of the results.
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