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Abstract. This work presents a comparison of the accuracy of the numerical schemes central differencing and 
UNIFAES (Unified Finite Approaches Exponential-type Scheme) for the discretization of the advective and viscous 
terms of the incompressible Navier-Stokes equations in primitive variables, employing the semi-staggered mesh. The 
backward facing step test problems are used. Several mesh refinements and Reynolds numbers are tested. Richardson 
extrapolation is employed to estimate the correct solution in cases which have no precise reference solution. For the 
backward facing step problem, it was possible to solve the non diagonally dominant pressure equation of the 
semi-staggered mesh by iterative method employing an appropriate under-relaxation factor. For Reynolds numbers 
above 600, the numerical results with both UNIFAES and central differencing schemes became crescently distinct of 
the experimental results found in the literature, which can be attributed to three-dimensional effects of the experiments. 
UNIFAES proved to be stable even at higher values of the Reynolds number, and more accurate than the central 
differencing. 
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1. INTRODUCTION  

 
The present paper deals with the two-dimensional modeling of the backward facing step flow, employing the semi-

staggered mesh, originally presented by Kuznetsov (1968), but which remains rarely used in the Finite Volume 
literature in comparison with the staggered and the cell-center collocated meshes. The time-wise integration of the 
incompressible Navier-Stokes is explicit. Three different discretization schemes are used for discretizing the advective 
and viscous transport terms: central differencing and UNIFAES. These schemes were extensively compared in the 
moving lid cavity flow, Figueiredo e Oliveira (2009a, b), where UNIFAES was shown to combine accuracy superior to 
the other schemes. 

In the cited references, using square meshes, the accuracy of the semi-staggered mesh is comparable to that of the 
staggered and the collocated meshes. For the reasons explained below, the semi-staggered mesh is much more affected 
than the others by non square meshes. Therefore, the backward facing-step flow, which is a well known test problem 
with the characteristic feature of demanding cells with very high aspect ratios, i.e, Δx much greater than Δy, was chosen 
to investigate this seldom used mesh. 

More information can be viewed on the doctoral thesis of Oliveira, K. P. M. (2009). 
 
2. METHODOLOGY 
 
2.1. Mathematical equations 
 

The governing equations for incompressible flows in 2D Cartesian geometries are presented below. The continuity 
equation is reduced to null dilation, i.e., null divergent of the velocity field: 
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The Navier-Stokes equations are expressed for simplicity as: 

 

u
u A
t x

∂
= −

∂ ∂
P∂  e v

v A
t y

∂
= −

∂ ∂
P∂  (2) 

 
where uA  e  represent the combined advective and viscous net flux of the x and y momentum components, given in 
conservative form, given below in terms of a dummy variable 

vA
φ :  
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In the equations above, the spatial coordinates x and y were made non-dimensional by means of a characteristic 

length , the velocity components u and v by a characteristic velocity , and time t by , where the 
Reynolds number is defined as

 

cL cV Re /c cL V
Re /c cV Lρ μ= . The pressure-like term  is the sum of the physical pressure P phP  and 

the hydrostatic head g zρ , made non-dimensional by the factor . /ch cVμ hL
Figure 1 sketches the semi-staggered mesh structure employed herein. Two mass control volumes are illustrated. 

The solid line represents the locations associated to integer value in the notation below. 
 

 
 

Figure 1 – Semi-staggered mesh. 
 

In the semi-staggered structure, Fig. 1, the pressure is located at the center of the continuity control-volume and 
both velocity components are collocated at its vertices. Filling entirely a rectangular domain with regular continuity 
control volumes automatically guarantees regularly spaced grids for both momentum components. The divergent of the 
velocity is: 
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The momentum conservation equations are discretized explicitly in time in the form: 
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Taking the numerical divergent of the vector equation (5)-(6) by analogy with the divergent of the velocity in Eq. 

(4), the resulting Poisson equation for the pressure is: 
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As usual,  is put zero and  is computed as (4).  1
1/2, 1/2

n
i jD +
− − 1/2, 1/2

n
i jD − −

The pressure equation (7) is generally not diagonally dominant, except in the case x yΔ = Δ , in which the influence 
coefficients of the nodes ( )1 2 1 , 1 2i j− ± −  and ( )1 2 , 1 2 1i j− − ±  vanish so that the central node ( )1 2 , 1 2i j− −  

becomes dependent on the nodes ( )1 2 1 , 1 2 1i j− ± − ±  only.  
The system of pressure equations is closed by using the velocities imposed at the boundaries in the neighboring 

continuity control volumes. Therefore, all pressure nodes are internal to the domain and no explicit pressure boundary 
condition is required. 

 
2.3. Figures and tables 
 
The choice of domain was based on the work of Armaly et al. (1983), which is often cited in literature as a reference 

work.  The experimental set had, the dimensions h = 5,2 mm e S = 4,9 mm: 
 

 
Figure 2 – Sketch of backward facing step with the dimensions of the Armaly et al. (1983)’s work. 

  
To maintain the same proportions of this work, we chose the height of the step so that they could divide whole into 

parts of equal length and with roughly the same rate of expansion, ie, 5.2 10.1 17 33≅ . This is explained as follows. T
difference between 5.2 and 4.9, ie 0.3, was taken as the highest possible cell size. If we divide the domain high for this 
value there will be approximately 33 units. From this account, we have chosen the mesh refinement in the vertical 
direction as 33 pitches and its multiples 66, 99, etc. 

he 

 
 

 
Figure 3 – Sketch of flow backward facing step with the dimensions. 

 

The geometry has [ ] [ ]0 , 0 , 33 34L x  as dimension. Two different values were chosen for the length L: L = 10: for 

Reynolds numbers between 100 and 700 and L = 15 for Reynolds numbers between 800 and 1200. The criterion for 
defining the length of the channel was based on comparing the effect of different lengths on the size of the bubbles, as 
shown in Table 1. 

 

 
Figure 4 – Sketch of 1 4 5,X X e X lengths. 

 

Tests were performed with various meshes while keeping the cell size and increasing the domain. Through these 
tests, we could see that for the first bubble a change in channel length from 10 to 20 did not interfere with the 
lengths 1 4 5,X X e X  until Reynolds 800, i.e., the profile had shown to be developed. Because of the second bubble it 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  
 
was necessary to increase the channel length for Reynolds equal and above 800 to about 15. These results are shown in 
the table 1: 

 
Table 1 – buble lengths results. 

 
semi-staggered mesh 

buble lengths Reynolds channel lengths 

1 /X S  4 /X S  5 /X S  
10,0(33x33) 3,23878 -------- -------- 100 
20,0(66x33) 3,23878 -------- -------- 
10,0 (66x66) 9,53269 8,38653 13,02188 500 

20,0 (132x66) 9,53272 8,38654 13,02188 
15,15 (50x33) 12,07873 10,19506 19,80813 800 
20,0(67x33) 12,07872 10,19506 19,80813 

15,15 (150x99) 13,83799 11,00957 28,52413 1200 
20,0(198x99) 13,83799 11,00957 28,45258 

 
Because of the lack of diagonal dominance of the pressure equation of semi-staggered mesh in non square grids, the 

following sub-relaxation factor was used for the pressure equation: 
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 (8) 

 
which approaches 1 3  when x yΔ Δ . 

The definition of Reynolds number, following Armaly et al. (1983) and many others, is: 
 

Re VD
ν

=  (9) 

 
where V is two-thirds of the velocity maximum input, which corresponds in the laminar case to the average velocity of 
input, D is the hydraulic diameter of the entrance (small) and corresponds to twice their high, , and v  is the 
kinematic viscosity . 

2D = h

All wall boundaries are impermeable and adherent. For the velocity, in the walls and in the channel entrance 
Dirichlet boundary conditions were used, while in the outlet homogeneous Newman condition is assumed, x L=  and 
0 33 3y≤ ≤ 4 . 

At the entrance, a fully developed laminar profile was assumed leading to the velocity shown in Eq. (10)  
In  and 0x = 8 17 33 34y≤ ≤  
 

2 98 5286 4
17 289

u y y⎛= − − +⎜
⎝ ⎠

⎞
⎟  and 0v =  (10) 

 
The system of pressure equations was closed using the values of the velocity of the border, even in the outlet, where 

the velocity vary throughout the iterative process. The pressure Poisson equation is solved iteratively with 200 Gauss-
Siedel sweeps for each time-wise iteration. The Rhie and Chow (1983) momentum interpolation was used as post 
processing to eliminate the oscillations of the pressure field. 

Figure (5) to (14) show the streamlines and pressure graphics for various Reynolds numbers. Figures show that 
consistent with the literature. 
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Figure 5 – Streamlines (above) and pressure (below) for Re = 100 with central scheme 
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Figure 6 – Streamlines (above) and pressure (below) for Re = 100 with UNIFAES. 
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Figure 7 - Streamlines (above) and pressure (below) for Re = 500 with central scheme 
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Figure 8 – Streamlines (above) and pressure (below) for Re = 500 with UNIFAES. 
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Figure 9 - Streamlines (above) and pressure (below) for Re = 600 with central scheme. 
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Figure 10 – Streamlines (above) and pressure (below) for Re = 600 with UNIFAES. 
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Figure 11 - Streamlines (above) and pressure (below) for Re = 800 with central scheme. 
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Figure 2 - Streamlines (above) and pressure (below) for Re = 800 with UNIFAES. 
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Figure 13 - Streamlines (above) and pressure (below) for Re = 1000 with UNIFAES. 
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Figure 14 - Streamlines (above) and pressure (below) for Re = 1200 with UNIFAES. 

 
 
Figure (15) shows the experimental results of Armaly et al. (1983) and the present numerical results for the 

1 4 5,X X e X lengths.  
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Figure 15 - Evolution of bubble length with Reynolds number. Experimental results of Armaly et al. (1983) and present 
numerical results. 

. 
Table 2 shows the extrapolated results of the computations with the schemes central differencing and UNIFAES for 

lengths data 1 4 5,X X e X , following the notation used by Armaly et al. (1983). Mesh refinements 66x66 and 99x99 
were employed up to Re = 700 and 99x66 and 150x99 from Re = 800 on. For the first bubble, there is excellent 
agreement between both extrapolations for low Reynolds numbers, with differences bellow 0,1%; the distinction 
between them increasing up to almost 1% for Reynolds number 800. The reattachment point of the second bubble also 
presents differences of less then 1%, but the beginning of this bubble is much more uncertain, with differences up to 
3%.  

As shown in these figures and in the table, for Reynolds number 600 and higher, an increasing difference can be 
seen between the experimental results of Armaly et al. (1983) and both present numerical results. That difference is 
attributed to the fact that the flow becomes three dimensional.  

 
 
. 
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Table 2 – Extrapolated results to the values 1 4 5,X X e X  using semi-staggered mesh with central, 
exponential and UNIFAES schemes. 

 

Extrapolations Scheme 
Bubble length 

Reynolds 

Central Unifaes Armaly 

100 3,1899 3,1887 2,7294 

200 5,2352 5,2273 4,898 

300 6,9462 6,9351 6,4877 

400 8,3512 8,3354 8,2123 

500 9,45795 9,4203 9,9373 

600 10,3131 10,2498 11,2345 

700 11,021 10,938 12,7535 

800 11,6591 11,5586 13,972 

900  12,1367 15,0412 

1000  12,6882 15,94 

1100  13,2154 17,0791 

Length of 1 /X S  

1200  13,7207 17,75 

500 8,14 7,9725 8,028 

600 8,5053 8,345 8,5954 

700 8,9146 8,7304 9,9268 

800 9,5252 9,1504 11,082 

900  9,582 12,2283 

1000  9,997 13,43 

1100  10,4066 13,9844 

Length 4 /X S  

1200  10,8195 14,74 

500 13,165 13,2472 12,82 

600 15,798 15,8715 15,2265 

700 18,245 18,3265 17,3993 

800 20,3914 20,462 19,31 

900  22,6128 20,5593 

1000  24,71 21,5 

1100  26,745 22,3676 

Length 5 /X S  

1200  28,754 23,2 

 
 

Figure 16 and 17 show the u-velocity component profiles along the channel for Re = 100 using semi-staggered 
mesh with refinement 66x33 central differencing and UNIFAES. The development of the profile towards a parabola is 
apparent in both schemes. 
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Figure 16 – Velocities profile using central scheme for Re = 100. 
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Figure 17 - Velocities profile using UNIFAES for Re = 100. 

 
3. CONCLUSIONS 

 
For the backward facing step problem, it was possible to solve the not diagonally dominant pressure equation of the 

semi-staggered mesh by means of the iterative method employing an appropriate under-relaxation factor. In other 
words, the lack of diagonal dominance of the pressure equations does not avoid the use of the semi-staggered mesh 
provided that adequate relaxation factors are applied. 

The results with the central scheme, when converged, were very close to the results of UNIFAES. 
With Reynolds from 600 on we can see a crescent difference between the numerical results of this work (with 

UNIFAES and central) and the experimental results of Armaly et al. (1983); this difference can be attributed to three-
dimensional effects cited by Armaly et al. (1983).  
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