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Abstract. Typically control systems are designed aiming &t $pecification of parameters of the controllerttigm
usually described by a differential equation. Instnoases, the controller is artificially construdtand you can also
update their initial conditions. In the design gftional quadratic regulators to update initial cotidns of the optimal
controller can significantly improve the performanof the controlled system. In this work is alsasidered other
constraints on the controller design, for exampésstrictions on output and entry and also restdos on the decay
rate. A design procedure formulated in the contéxtnear matrix inequalities (LMIs) to update timétial conditions
in Pl controllers considering also other constrainis presented. The applications of the proposethadefor
controlling an inverted pendulum and the controhathemical reaction prove its effectiveness.

Keywords: quadratic regulatorjnitial conditions IVC, optimal control, LMIs.

1. INTRODUCTION

In the design of automatic control systems, thd go@ obtain a control law that supplies the itspof a process, so
that the system has an acceptable dynamic perfaaenam the vast control literature, there are saversults on pole
allocation in control system design. However, tberect location of the zeros, for instance of agfar function, can
also be indispensable to obtain a good transiespiorese. It is possible to allocate zeros of trarfsfections, by using
available dynamic feedback structures (Kienitz &@rdbel, 2000). In many aerospace control systerhizchwequest
high precision, the design of optimal control hagfb considered a very important subject. For ingtaa method that
has been very much used is optimal control basetherminimization of quadratic performance indeXxesOgata
(1997), it was observed that the initial conditafra controlled system influences the quadratiégoerance index.

Many servo control schemes in mechatronics systeut) as hard disk drives, must meet the spedditabf both
fast movement and precise positioning on a knoviereace. To meet this requirement, one servo stredor fast
access and other for precise positioning are dedighhen, the control is switched between thesesevao structures.
This type of servo system is called Variable SticetControl (VSC). Each servo mode can be optinddisigned by
the minimization of its desired performance ind€kerefore, the remaining problem is how to switenf one mode
to other. In Yamaguchet al, (1996), is proposed the method called InitialuéaCompensation (IVC) to improve the
performance of the transient response after switchlhis method was also used with the intentiomeaiucing the
stabilization time of the controlled system (Jolsams 2000; Hiroset al., 2011). In these references, the design goal
was to minimize a quadratic performance index (denated IVC 1), with the reference signals equak&vo. The
plants and controllers in these researches areetlistime systems. In Teixeied al, 2002, it is considered a controlled
system, consisting of the plant and one or moreadya controllers, continuous in the time, with apsteference
signal, and it is shown analytically that the @littonditions in the controller can be modified pnoving the transient
response of the system, according to a quadratexinA modification of the initial conditions inghcontroller can be
interpreted as a change in the positioning of ti@s of the system. In Teixeied al, 2006, the authors present an
alternative method for optimum compensation of itidal conditions on the controller, in the casensidered the
integral type, based on LMIs. This work is alsasidered other constraints on the controller dedignexample,
restrictions on exit and entry and restrictionstiom decay rate. A LMI-based design procedurepiate the initial
conditions in PI controllers considering also othenstraints is presented. This article is orgahias follows. In the
next section is revised the first method proposed ¢ixeiraet al. (2006) for the optimal specification of initial
conditions on the controller using LMIs, the des@froptimal quadratic regulators to update theidhitonditions on
the controller. In Section 3, we approach the updat the controller when considering further retibns on the
controller design, such as decay rate and restnigton exit and entry. In Section 4, we apply tlethods presented in
the control of an inverted pendulum and the cordgf@ chemical reaction. Section 5 presents coiarigs

2. STATEMENT OF THE PROBLEM

Given the system shown in Figure 1, wélsidn both a matri = [— K K, ] and the optimal initial condition,
¢io» the controller in the case considered the integpe:

u(t) =-Kx p (&) + K| &) . €
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Figure 1 - Closed-loop System.
The system is described in state variables as:

X(t) =Apxp(t)+Bput), @
y(t) =Cp Xp(t), (3)
e(t)=r (t)-y(@), (4)
cM=e®=r1)-Cpx,(), ®)

being that x,(t) 0" is the state vectony(t) 7 7 is the input vector and given in (1§¢) 70 , e(t) is tracking error
the vector error and(t) is the referencep, 70™", B, 0™ and Cp 0™ are constant matrices.

From equations (2)-(5) can describe the dynamitketystem by:

Xp (t) _ Ap © Xp(® |, [Bp 0
{ to | |-Cp 0| e oo NOF @, (6)
being thatO0 denotes a vector with all elements null and sizel.
Defining
Xe(t) = Xp(t) = xp(0); Lelt) =€ (1) ~<();  ue(t) =u(t) —u(e). @
Now, defining the vector-error of size (n +1) by
o) =[xe® &) ®)
Thus, the dynamics of vector-error is described by:
é(t) = Ae(t) +Bug(t), 9)
being:
A, O B - -
— p r=| P =. . = -
A{_Cp O},B{O}, Ue() =-K et); K=[K -K] (10)
By replacing(9) in (8):
é(t) = (A-BK)e(t) (11)

2.1 Analysis of the Lyapunov Stability

In this case, the study of method of Lyapunov talgae the stability of the closed-loop system (14)
accomplished through the study of the following lsMlI

P(A-BK)+(A-BK)"P <0, P>0, (12)

Thus, of (12) doing a manipulation, multiplying botides of (12) perP?, and defining X = P71 and
M =KP™?=K X we have:

AX+X A'-M'B'-BM <0, X >0, (13)
being X = X T, which now being are LMIs. If these LMIs are dite, ie presenting at least one solutignandM,
then the controller gain is given g =M XL, In the design of optimal control is desired tonimiize a performance
index. Tanaka and Wang (2001), design an optinmyficontroller for nonlinear systems by solvingaptimization

problem that minimizes the upper bound of a quéadrformance index. Then, this idea is appliedesign optimal
control for linear systems.

2.2 Performance Index

The gain matrix of state feedback controller isaired byK :[K -K| ] in order to minimize the upper limit of the
index:
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J(Ue) = [ (€T Qe + ueT MR we(t) dt 14)

being thatQ is a real symmetric positive definite matrix aril is a real matrix symmetric positive definite Br=0.
The following theorem provides an upper bound;to

Theorem 1: The system (8) - (9) can be stabilized by corgro{lL0), if there is a symmetric positive definitetrix
satisfying:

0| X
AX+XAT-MTBT -BM +[x —MTH(S R}{_M}<o, (15)
X >0. (16)
Moreover, the performance index satisfies
31 (ue)< €T (0) P &(0), (17)

being P=XteK=MP.
Proof: See Teixeirat al.(2006).

Inequality (15) can be transformed into LMI. Then8ccomplement (Boyd et al., 1994) converts a ctdgsonlinear
inequalities in linear matrix inequalities. Follmg is presented a controller design “sub-optimadsed on LMIs,
which stabilizes the system and minimizes the uppend of performance index based on the resdthebrem 1.

Theorem 2: Given matricesA and B of system (9)-(10), and the initial conditie(0), then X = X' and M
matrices that allow determining the feedback gduat tstabilizes the system and minimizes the upmemd of
performance indexJ; can be obtained by solving the following LMlIs:
minimize A
X, M

subjectto

{ p eT(O)} o 8)
e (@ X

X >0, (19)

AX+XAT-M"BT x,Q -MTyR
Jox -1 0 <0 (20)
-JVRM 0 -1

Of the solution of LMIs, the feedback gain can béamed by the expressiowﬁ =Mx 1.

Then the performance index satisflg$u, ) < e"O)Pe®) <A, withX = p1
Proof: See Teixeirat al. (2006).

Remark 1: From the definition in (7) e (8):
- Xp(t)'xp(m)} 0 :[Xp(o)'xp(w)}z[xo}
0 { f0-é | 07| e |Tla ) e

Remark 2: If the plant (2)-(3) has no transmission zeroshatdrigin, then (more detail, see Teixedtaal, 2006), Xo
is known and it is not a function df oré, . Thereforeé, can be arbitrary chosen and offers a new degréeedom
in the design of the controller and the value carclosen conveniently. So is the choice of a neyvedeof freedom in
controller design. The problem of optimal controliesign, to update the initial conditions of thentoller, using
LMIs defined below.

2.3 Specification of the Optimal Compensation of the litial Conditions of the Controller

Consider the following problem:
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Problem 1: Consider the system described by (9)-(10). Suptiedehe reference inpuf(t) (a step function with value

equal tag) is applied int =0:  r(t) = ] To, to 120,
0 to t<0O,
where r, is a known real constant. Determifje the compensation ir§|(t) in t=0, such that there exists

p=p' >0, for the solution of the following LMIs:
(i) P(A-BK)+(A-BK)'P < 0;

(ii) the upper bounde’ (0)Pe(0), of the performance function below is minimized:

Jyu) =[" (eTQe+ u'R ue)dt ,

whereQ is a symmetric and real positive definite (or s@ositive definite) matrix andR is a real constant, and
Rz20.

The solution proposed is shown in Theorem 3 below:

Theorem 3 Given the matrices and the system (9)-(10), aitéhi condition e, (0) , the Problem 1 has solution when
the following LMIs are feasible:

minimize A
Xll’le'XZZ’Ml’MZ’fl
subject to
T
{Xn X12:l>0, (22)
X12 X22
Aoep0 4
T
ep(O) X117 X2 [ >0 (23)
4] X12 X2
U11 U1 Vi1 Viz -M{'WR
T T T T
Ul =Xy,Cpl =CpXgy Va1 Voo —-M"VR o
T T
vlTl v1T2 -1 0 0 <0
Vi, Vs, 0 -1 0
-VRM; -JVRM; 0 o -1 |

where:
V11=X11Qup + X12Tle V1o = X11Q12T + X12TQ22 V21 = X15Q11 + X2,Q2: Voo = X12Q12T + X22Q2; M = [Ml M 2]

T T
Ug1= XA, + A Xy —~M{B, =B,M ;U = A X," - X,,C,7-B,M ;x:liill ;:12} : \/6:[811 %12}
12 X22 12 Q22

-1
A B 0
ep(©=Xp ) ~xp(®) =xp O ~[1n O]{_Cpp 0"} M- (25)
From the solution of these LMIs, the controllerrgis obtained by = MX ~*. Furthermore, the optimal compensation
of the initial condition in the controllef, , is given by{jg =& +¢(®)—£(0 ), where £(07) is the initial condition of
the controller before the compensation with:

o) =T () &) =-A g ,A=[Ap__cip'( wpt }; 5 :m (26)
Proof: The LMIs (22)-(24) are obtained from the (18)-(2&ritten:
x:{xll X1, A:{ A o} B{Bp] C:[Cp 0] ve(0)=[ep(o)} eM=[M; My]. @7)
X12 X22 “Cp O 0 q
The compensation value follows from the fact:
1 =4(0) =4 (=), (28)

Defineé(07), the value of the initial condition of the contesl before the compensation, then from (43c) the
compensation value is given by:
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&0 =(optimal initial value) - (initial valuebeforethe compesatior), that is ,
$lo =41 +¢(«)=¢(07), (29)
where&(«) is obtained frome(e) = [x p' () {(oo)]-r =-A"Bry .

3. Compensation of Initial Conditions on Controler with Others Indexes Performance

In this method, the following indices of performanare considered beyond the stability : the spéeesponse and
restriction of input and output.
3.1 Restriction on Input

Assume that the initial condition of the plant isokn. The restrictiorfu(t)| < is imposed on whole time if the
LMIs :

i T
1o (0)} >0 (30)
| X(0) X
and_
X “Q }zo (31)
Mol

are satisfied, (see (Boyd et al., 1994)), wkh=P * e M = KX .

3.2 Restriction on Output

Assume that the initial condition of the plant isokvn. The restrictior]y(t)| <A is imposed on whole time if the
LMIs (30) and:

X xcl_ . @)
cx AT

are satisfied, (see (Boyd et al., 1994)), wih= P .

3.3 Decay Rate

Consider a candidate Lyapunov functivix(t)) = x"Px and thaV (x(t)) <0, for allx 0. The decay ratg>0, is
obtained if the conditionV(x(t)) < -2 (x(t)) (see (Boyd et al., 1994)), is satisfied for angjectory which is
equivalent to:

AX +XAT -M TBT -BM +2)X <0. (33)

The speed of response is related to the decayieatéth the largest Lyapunov exponent. A probleistable controller
design with constraint on input, output and ratdeday can be defined respectively by:

i) the restriction of input: FindX , satisfying, (13), (30) and (31);
i) the restiction of output: FinK , satisfying, (13), (30) and (32);
iii) decate ratg/: Find, X , satisfying X >0 and (33).

The problem of controller design with compensattba initial conditions of the controller, which siftaneously
considers the constraints of input, output and yleate is described below.

3.4 Specification Optimal of Initial Conditions in the Controller with others Indexes Performances

Problem 2: Consider the system described by (9)-(10). Supplesethe reference input(t) (a step function with

value equal tag) is applied int =0:  r(t)= [T, to t=0,
0 to t<O,
wherer, is a known real constant. Determidg, the compensation i§;(t) in t=0, so that the system is stable,

Jlue®|< . |y <A and the speed of the response degaywhere u, A e y are positive real constants. The
solution proposed is presented in the followingtieen:
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Theorem 4 Given the matrices and the system (9)-(10), aiteai condition e, (0) , the Problem 2 has solution when

the following LMIs are feasible:

maximizey
Xll’x12’X22'Ml'M2’£l
subject to
T
{Xll Xlz:l > 0 (34)
X12 X22
T
{Un Ug2 }o, (35)
Uiz U2
T
X11 X12 X12Cp
&
X12 Xoo X11Cp >0
Ty T 2
Cp X12 Cpxll A

(36)

1 ey §
T
ep(0) X112 Xp2° | >0
§i X12  X22

@7

T T
X11 X12° Mg
X12 Xo2 M2T >0
M1 Mz u

(38)

where:

_ T Tp T _ T T
U11=X11Ap +ApX11-M1 Bp' =BpMy+2)Xq11,U12 = X12Ap " —CpX11-M2 B +2)Xy

.
5 - X171 X
u22:—xlchT—cp X19" +2)K90, M=[M7 My]; K=Mx7L; x{xll le} . (39)
12 22

Proof: analogous to the proof of theorem 3. From theitsm of these LMIs, the controller gain is obtainkey:
K =MX ™. Furthermore, the optimal compensation of theiahicondition in the controlleg,, is given by

o =& +&(0)—£(07), whereé(07) is the initial condition of the controller befoitee compensation .

4. APPLICATIONS EXEMPLES
4.1 Control of an Inverted Pendulum wih Optimal Compensation on the Initial Conditions d the Controller
It is considered, as in Teixeira et alli (2002¢ thsystem inverted pendulum, the described by emsfollowing
(Ogata,1997):
6(t) = 20601 6(t) - u(t) ,
y(t) =05u(t) -0.4050(t) . (41)

To control the position of the cart system withazerror for a step type input is made retroactitelthe position signal
(indicating the position of the cart) for the entand an integrator is inserted in the path ofomctihead as shown in

Figure 2.

(40)

Y YV
<
"
o
x

r ¢

Figure 2: System of the control inverted pendulum.

Considering the definition of state variablesx@s: 0 ; x, =d; X3 =y; x,=y. Then, based on equations (40)-(41),
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and considering the position of the cart as théesy®utput, are obtained the following equations

Xp(t) = Ap Xp(t) + Bp u(t), (42)
y(t) =Cp Xp(t), (43)
ut) =—Kxp () +K (1), K =[Ky Ko Kgz Kgl, (44)
EM)=r®-yM)=r{®)-Cpxpt), (45)
where:
0 100 0
| 20601 0 0 O 1] c=fo 0 1 q
Pl 0o oo 1['BrT o | TP '
-04095 0 0 0 -05

The performance index is described by (14) w@kdiag{100,1,1,1,0.01}and R=0.01. The design problem of
controller with optimal compensation of the initial conditionsing LMIs is: minimize A and find X,; = X;,", Xy,

X0 = Xo0' s My, My, & satisfying  (22), (23) e (24), being:

x(O‘):[xp(O)T 5(0‘)]T:[0 0000 and e©=xp0-xp@)=[0 0 -1 0.

From the solution obtained with the software LMISol, one Aasf, and the matriceX,,, X;,, X,,, M;, M, that

solve the LMIs . The solution is given:

K=MX"1=[-12340 -2067 -1144 -1800 129, § =-22597 , A=157488.
Therefore,K =[-12340 -2067 -1144 -1801],K; =-1.2971 So,

0 1 0 0 0
 [Ap-BpK BpkK, ~1028034 -206700 -11442 -180065 12071 |
A=P o 15| o 0 0 1 0 B=|,| 46)
P 612117 103350 57221 90033 -0.6486
0 0 -1 0 0

ew)=-A"Brg=[0 0 1 0 88224" e &()=8.8228.
Since, £(0” ) =0, we obtained from (29), the optimal compensation initiabitions of the controller as:

$lo =4 +&(w)-¢(0) =6.5631
The theorem 3 solved Problem 1, it providing simultasty the gain K, “sub-optimal”’, K =[K -K,] and &
obtain the optimal compensation of the controllég, o =& +¢()—£&(0) . Note that this optimal value depends
of the K because &(«) = -A1Br, With matricesA e B of the equation (46). Fig. 3 presents the ouggt)tand the
control lawu(t) of the feedback system with the initial conditions compgmsan the controller, when a unit step input
is applied. The performance index was obtainge2.0984.

12

4

saida da plants, yit)
o oo
ry o m

a
[

0z

] s 10 15 20 25 a0 35 a0
tempo(s)

Figure 3:Unit step response for the inverted pendulum system withhom compensation of the initial conditions.

4.2 Control of an Inverted Pendulum with Compensation for Initial Conditions in the Controller with
Restriction in the Input, Output and in the Rate d Decay
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We considered the problem of inverted pendulumritest by equations (42) to (45). The gains of tbetwller were
designed so thatlaximize y and find the symmetric matriceX;;, X15, X5, and matricesM,;, M,, ¢
satisfying (34), (35), (36), (37), (38), with=14, A=3 e x,=[0 0 0 0.
When y =1.1= ymax. We obtain with software LMISol, the matricestthaerify the LMIs above :

0.6329 -16757 05320 -15064 0.1874

-16757 75055 03587 -04847 02493
X =| 05320 03587 83880 -9.2799 6.1487 |» M =[-17676 49742 -113922 350689 -4.6893 .

-15064 -0.4847 -92799 151079 -5.2064
0.1874 02493 6.1487 -52064 55277

Therefore, are obtaine® = Mx ™ =[-613069 -132682 -106459 -895095.2393, & = -1.5497. Figure 4 presents
the outputy(t) and the control law(t) of the feedback system, to a unit step inputait lbe verified that
|y(t)] =1.004< 2 e |u(t)| = 2.6569< 4.

12 3

1

=
@

saida da planta, 1)
= o o
[ = >

o

22 3
o 2 4 6 8 1 12 14 18 18 20 o 2 4 6 8 10 12 14 16 18 20
tempo(s) tempo(s)

Figure 4: Unit step response and control lawirfeerted pendulum system with compensatiorhefinitial
conditions on the controller, restrictions on odtund input and maximum rate of decay.

4.3 Optimal Compensation of Initial Conditions in aReactor Controller with Agitation (RA)

Consider that in an (RA) with a liquid phase isothal and multicomponent chemicals react accordinipé nonlinear
dynamic model described by (Scarratakt 2000):

5q(t) =1-{1+ Doy Jxa(®+Day (1), @7)

%2(t) = Dgy (D) ~Xp()~(Da, + Day P +u(t) (48)

%(t) = Dag X5 (1) ~a(t), (49)

y(t) = x3(t)., (50)
where x; (t)>0 , 1I=123 to t=0 and represented :

¥ (t): normalized concentratiorC /Cag Of the specie A,
Xo(t) : normalized concentratiolCg /Cpr  Of the specie B,
X3(t): normalized concentratiorC- /C g of the specie C,
Car : steady regime of the specie A (mofynu(t) : control signal,
and partene: ry=0.7737,Dy =30, Dy, =05, Dy, =10. (51)
The system (47)-(50) has the following equilibripmint (xe ,Ug ):

xe =[0.3467 0.8796 0.7737, ug(t)=1. (52)
Want to design a controller so that the outputiiea@nd remains in the valyg= 0.7737 and that:
025<x,(t) £ 04; 08< X,(t) <11; 05<x4(t)<08. (53)

Then the system (47)-(50) will be described in otwordinates to that the linearized system hasarsmission zeros
at the origin. Set

Xa(t) =X3 (1), (54)
up (1) =u(t)—Xa(t) - (55)
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Now,

%o (0)=2% (0% (1) =2%5(1) [Da, X4 0~ X2 () - (s, +Da3)x%(t)+u(t)] =2%,(1) [Day (0 ~(Day +Day JRo0) +uy (0] 56)
Therefore from (54) — (55), the system (47) 9 & be represented by:

%(t) =1~(1+ Dy, Jxa(t) +Da, %o (1), (57
Xo () =2Dy, X (1) /%o (1) = 2% (1) (Da2 +Dg, )iz(t)*'z\/ Xo(t) uy (1), (58)
*3(t) = Da, Xo(t) —X3(t) , (59
y(t) =x3(t). (60)
Considering,
Ax (1) =x(t)- 025 e Auy (t):Dal 025+up (1) (61)
We obtain from (57):
D (t)=—(1+ Dy, JAxy(t) +Da, %o (1) - (62)
Finally the nonlinear system (47) - (50) in theiahlesAx, (t), X,(t) e X, (t) is described as:
D5 (1) ==L+ Dy )Axy(t) + Dg, Ko 0) (63)
%(t)=2D,, {%o0) 54 () ~2y%o(®) (D, *+Day Ko 0)+24% () 2un (64)
X(t) =Day X (1)~ X3 (1) . (65)
y(B) =x5(t) . (66)
Therefore of (54)-(60) and considering the valuethe parameters adoptda,, , Da, © Da, in (51):
() |7 6% () —3yRo() 0 || Kao(t) | +|2/%o (1) |Aun (1) (67)
X3(t) 0 1 -1 X3(t) 0

From the equations (54)—(55), (61), (52) and dBQnApx(t)=[Ax1(t) Xo(t) X3 (t)], we obtain that equilibrium
point of nonlinear system (67§Apx(t),AuN):(Apxe,Aue) , IS

A pxe=[0.096 0.7737 0.7737, Aug=0.8704. (68)
From (68), (54), (55) e (60):
0<Ax(t) < 015; 064< Xo(t) < 121; 05 < x3(t) < 08 (69)

Locally, the non-linear system (67) can be apprated by truncation of the representation by theldrageries
expansion around the equilibrium point:

-4 05 0
ApX(t)= ApA,x(t)+BpAuy being A, =|52776 -26413 0|, B,=[0 175 0] .
0 1 -1

To design the controller so that the output of giistem remains in the valug= 0.7737 is considered the augmented
system:

ApXx(t)= ApA pX(t) + BpAuy
E(t) =r(t) ~Cph pX(1)

The performance index of the system is describgd4) being:Q=diag100,1,0,0.01}and R=0.01.The design of the
controller to compensation the initial conditionsing LMlIs, is: minimizé. and find

X11= XllT y Xlz, X22 = X22T, Mly MZ’ §C| SatISfyII"Ig (22), (23) e (24), W|th

(70)

.
x(07) :[xp(O)T {(0‘)] =[o 064 05 0", e,(0) =x,(0)-xp(w) =[-0.0967 -0.1337 -02737".

The software LMISol provided A, § and the matricex;;, X,,, X,,, M;, M, that solve the LMIs above . The

solution obtained wa% = MX "1 =[135763 15615 1.4874 -0.420d ;& =-0.2336, b, and so
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e(w) =—A™Br, =[0.0967 0.7737 07737 108444", &() =10.8446
Therefore, consideringso™)=0, from (29), the optimum compensation of the initanditions of the controller is :

o =& +&(0) = &(0) =10.6110. Figure 5 presents the output y(t) and the comenalu(t) of the feedback system,
to a input step of amplitudg = 0.7737, with compensation of the initial condition, catexing x,(0) = [0 064 05| .
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Figure 5: Step response of amplitudg0.7737 , and of the control signal of the sysf{eRA) with optimum
compensation of the initial cdiwh , consideringx,(0)=[0 0.64 0.5].

5. CONCLUSIONS

This article presents methods for optimal updatifigthe initial conditions on the controller, in tlwase
considered the integral type, based on LMIs. Tist fnethod is the design of optimal quadratic ratpuk, in which the
controller is designed to minimize the performamziex. This is an alternative method (Teixestal.,2006) to update
the initial conditions because it takes an appret@roptimal value of the update. The method fildsetxact value was
presented in Teixeirat al., (2002). The second method is presented when weidmngirther restrictions on the
project, for example, restrictions on output anguinconstraints, rate of decay. To our knowledge,dptimal updating
of the initial conditions with the use of LMIs, Wiother restrictions are considered had not beademThis upgrade
method using LMIs, provides a way to study the tpad the initial conditions for nonlinear systems.
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