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Abstract. Numerical solution of Navier-Stokes equations is still a hard task when applied more 

aggressive boundary conditions and complex geometries. To achieve satisfactory results, the discretization 
schemes face great obstacles that must be overcome, including the numerical stability, convergence rate, 
dependence on the grid configuration, etc. A widespread practice for checking the quality of a numerical 
scheme is its application in a wider range of problems with increasingly complexity and where the boundary 
conditions can be extended to more critical levels, making it possible to identify the spectrum of behavior of 
the scheme. The classical problem of lid driven cavity is considered here with inclined walls. Using the 
formulation in generalized coordinates, the objective is to expand the test cases for this geometric 
configuration and compare UNIFAES to other discretization schemes such as QUICK and 2

nd
 Order Upwind. 

Results were obtained through algorithm developed by the author using the finite volume method with the 
SIMPLE method for velocity-pressure coupling and also through ANSYS software based on finite element 
method with Streamline Upwind Petrov Galerkin (SUPG) element type.  
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1. INTRODUCTION 
 Numerical methods in fluid flow are very powerful tools to solve problems that solutions eventually 
are not possible to be found in analytical way. The finite volume method is a traditional numerical tool that 
has been widely used to solve fluid flow problems, is based on a principle similar to finite element method 
that is the domain division into smaller control volumes and then performed the governing equations 
integration over this discrete volume. Idelsohn and Onate (1994) has found some equivalent formulations 
between finite volume and finite element when specific interpolation schemes are used. 

An interpolation scheme appears from the need to describe the fluid behavior by simpler equations. 
Central interpolation scheme assumes that the variable, “u”, “v” velocity components, temperature, etc, at the 
volume interface is the arithmetic mean between two adjacent nodes. This assumption results in a 2

nd
 order 

interpolation curve that gives Central scheme some important numerical qualities such as stability and 
accuracy, but it is not so good in high convective problems. 

The success of the method depends on the kind of interpolation is made between the volume 
interfaces to evaluate interfacial variables. Divergent solutions and numerical instabilities appears from 
highly convective flows, non linearity in fluid properties and high gradients. 
 Some traditional schemes like Central and Upwind due its mathematical simplicity to be implemented 
are good options for some kind of problems but they can fail and generate wrong results if boundary 
conditions and geometric configurations are more aggressive. It is known that Upwind scheme has a good 
behavior in high convective problems but it is highly numerically diffusive. Find the ideal discretization 
scheme is a task that still running and testing cases even more complex is a way to verify the scheme 
quality. This paper brings some additional results to Navier-Stokes solution obtained with finite volume 
method and UNIFAES scheme and comparisons with QUICK and 2

nd
 Order Upwind schemes. 

 
2. PROBLEM DESCRIPTION AND SOLUTION METHOD 

2.1 Governing equations 
The equations used to describe this problem are the two-dimensional continuity equation and the 

steady state Navier-Stokes equations for incompressible fluid and constant properties. Computations were 
performed using ANSYS code used as comparative result and FLOW code written by Vilela (2001) and 
already used to solve convective-diffusive transport problems in generalized coordinates, Vilela and 
Figueiredo (2002) and fluid flow inside bi-dimensional gradual divergent duct, Vilela (2001). ANSYS is based 
on finite element method and FLOW code is based on finite volume method with generalized coordinate form 
of equations as can be seen in eq. (1) and eq. (2) 
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Continuity equation:          
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Navier-Stokes equation for ξ direction         
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Navier-Stokes equation for η direction 
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where: 

ξ, η are generalized coordinates  
J is the geometric transform Jacobian matrix 
qij are transform coefficients 
u,v are cartesian velocities 

vu ~,~  are covariant base velocities 

 

Equations (1) and (2) are solve in a rectangular, equally spaced transformed plane ξ, η and the geometric 
relations between physical and transformed planes are given by Jacobian matrix J and qij coefficients. Even 
in the 90

o
 cavity configuration, where the Jacobian matrix gives only a scale transformation and in theory 

there is no need to use generalized coordinate form, this formulation were completely used. The Jacobian 
matrix also indicates a measure of volume deformation to the reference volume/element in finite volume and 
element formulations, and some care must be taken to grid generation to avoid volumes with large 
deformations.  
 
 2.2 Geometry 
 The geometry and boundary conditions are presented in fig. (1a). It represents a square cavity with 
left, right and bottom walls with no slip conditions and the superior wall moves with uniform velocity U from 

left to right and the angle α is the cavity deformation. All grid points follows the wall orientation as can be 
seen in fig. (1b). 
 
 

 
 
 
 
 
 
 
 
 
 

(a)                                                           (b) 
Figure 1. (a) Geometry and boundary conditions, (b) Grid configuration 

 
 2.3 Discretization schemes 

The finite volume method is use to solve eq. (1) and eq. (2) and three numerical discretization 
schemes are considered: QUICK, by Leonard (1979), UNIFAES, by Figueiredo (1997) and 2

nd
 Order 

Upwind, by Leonard (1988). QUICK and 2
nd

 Order Upwind are part of a class of schemes based on 
polynomial interpolation curves. One of the most traditional and known scheme of this class is the Central 
scheme. Here the Central scheme is use as a reference to iteration number comparisons.  QUICK has been 
tested for a large range of problems and it has demonstrate to have a very good behavior facing aggressive 
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boundary conditions and flow characteristics, but it still stalls generating unphysical solutions and oscillations 
in highly convective step profiles and some non linear flows, Leonard (1988). It is based on a quadratic 
interpolation curve and Leonard is very incisive to it`s quality face to exponential type schemes, Leonard 
(1995). 2

nd
 Order Upwind is a discretization scheme that came to overcome the numeric diffusion and 

oscillations problems present in traditional Upwind scheme. Other class of numerical schemes is based on 
exponential interpolation curve. Some schemes of this class is the traditional Exponential which uses a 
simple exponential curve, and examples of more complex and robust schemes are LOADS by Wong and 
Raithby (1979) and more recently UNIFAES, which is the object of this paper. UNIFAES has been tested in 
cases like natural and mixed convection in porous media Figueiredo and Llagostera(1999), Llagostera and 
Figueiredo (2000), and it has demonstrated very good behavior in accuracy and numerical stability.  

Figure 2 shows the nodes contributions in a one-dimensional computational cell for QUICK, 
UNIFAES and 2

nd
 Order Upwind schemes. The FLOW code uses only one grid for all variables: velocity 

component “u”, velocity component “v” and pressure. This characterizes the collocated grid arrangement and 
as can be seen, special treatment must be done on boundary nodes when using a high order scheme. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Nodes contribution for volume interface “e” interpolation 
 

 When the complete scheme formulation is applied on boundaries, eventually some cell nodes falls 
out of the computational domain due to orientation of the considered velocity which is the case of QUICK 
and 2

nd
 Order Upwind. On boundaries where the complete formulation is possible to be applied, it was done, 

but on boundaries which it was not possible, only in this particular node was considered Central 
discretization scheme. Table (1) relates all cases where it happens. 

 
 

Table 1. Boundaries with special treatment 

Right wall Left wall Top Bottom 
2

nd
 Order Upwind ue<0 2

nd
 Order Upwind uw>0 2

nd
 Order Upwind vs>0 2

nd
 Order Upwind vn<0 

QUICK ue<0 QUICK uw>0 QUICK vs>0 QUICK vn<0 

 
 
 Analyzing figure (2) sketch for one-dimensional cells is easy to notice that for bi-dimensional cells for 
each node discretization will be needed more adjacent nodes, depending on the scheme and velocity 
orientation. The assembly of the global matrix may results in a penta-diagonal linear system. To normalize all 
schemes, the global matrix is forced to be tri-diagonal and a TDMA algorithm can be use to solve it. The 
contribution to global system of all extra nodes that do not belong to a tri-diagonal association is consider as 
second source term. Cho and Chung (1994) explains that if is use a penta-diagonal matrix, specially for 
pressure correction, the system becomes implicit and instable resulting in very small relaxation coefficients 
and the use of more robust system solver. 
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Figure 3. Global matrix assembly 

 
2.4 Computational code fluxogram 

 Figure (4) shows the FLOW code fluxogram where can be identified some important procedures.  
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Figure 4. FLOW code fluxogram 
 
 The velocity-pressure coupling is provide by SIMPLE scheme and to prevent the checkboard 
pressure distribution that eventually arise from collocated grid arrangement, Rhie and Chow (1983) 
interpolation for velocities is used. 
 
3. NUMERICAL RESULTS 
 Numerical solutions are obtained for primary variables and it’s analysis is divided in four stages:  

a) convergence speed that shows the scheme velocity to achieve convergence criteria at each test 
case,  
b) velocities solutions that are presented as streamlines plot, numerical solution and extrapolation for 
center point cavity values, u velocity distribution along vertical center line and v velocity distribution 
along horizontal center line,  

c) L2 and L∞ norm error analysis for u and v velocities along respective center lines, figure (5) 
d) vortex locations, figure (5). 
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Figure 5. Error distribution for u and v velocities and vortex locations 
 
 The solution is considered satisfied if the convergence criteria described in eq (3) is satisfied for all 
variables at all nodes. 
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where:  φ represents the velocities components and pressure 
 k, k-1 are actual and last iteration process 
 i is the node number, 1 ≤ i ≤ npoints 
 
 Table (2) relates all flow conditions, cavity configuration and grid refinement considered. 
 

Table 2. Configurations for test cases 

 
 
 

  

 
 For convergence speed comparisons a reference value considered is the number of iterations for 
Central scheme discretization, 30x30 divisions grid, 90

o
 cavity deformation and Re=100. The number of 

iterations for each case is related to reference by coefficient described at eq (4) and are all listed in table (3). 
 

refIter

Iter
=β            (4) 

where: 
Iter - iterations for current case 
Iterref - Iterations for reference case: Re=100, 90

o
 cavity, central scheme, 30x30 grid. 

 
Table 3. Iterations for convergence – best values highlighted 

Re αααα    QUICK UNIFAES 2
nd

 Order Upwind QUICK UNIFAES 2
nd

 Order Upwind 
30x30 30x30 30x30 60x60 60x60 60x60 

100 90 1,0705 1,0589 1,0648 4,4076 4,4675 4,3456 
100 60 1,3784 1,4129 1,4426 5,5775 5,1691 5,9505 
100 45 1,7400 1,7328 1,7318 7,4571 6,5323 6,6101 
100 30 2,0536 2,1969 2,2268 7,4956 7,6415 7,6951 

500 90 1,4284 1,3874 1,5708  5,2264 6,0833 4,8659 
500 60 1,3562 1,3153 1,0465 4,2474 3,8531 3,9478 
500 45 1,1449 1,1965 1,3199 4,7972 4,8288 5,2857 
500 30 1,5989 1,7114 1,9786 6,5040 6,6069 27,6336 

1000 90  4,3196 2,6601 1,6603 7,8539  6,2362 9,6858 
1000 60 2,2229 0,9713 1,1508 3,8439 3,5525 4,0895 
1000 45 1,5707  1,5074 1,3214 18,1977 18,6976 15,6743 
1000 30 2,1098 2,2749 2,0304 25,6794 24,7675 25,2525  

 
 

A: primary vortex 

 

B:  
secondary bottom 
right vortex 

 

C: 
secondary 
bottom left 
vortex 
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 The first set of results listed in table (3) shows the convergence velocity. In general among 24 test 
cases, UNIFAES was the best in 9 cases, 2

nd
 Order Upwind was the best in 9 cases and QUICK the best in 

6 cases. With the coarse grid size, 30x30, UNIFAES is the best in 3 cases and 6 cases with 60x60 grid size. 
For Re=1000 grid size 30x30 2

nd
 Order Upwind is the best except for one case and with 60x60 grid size 

UNIFAES is the best also except for one case. For 30
o
 cavity deformation QUICK is the best for 4 cases, 

UNIFAES and 2
nd

 Order Upwind are the best for roughest case with higher Reynolds respectively for 60x60 
and 30x30 grid size. 
 Qualitative plots of streamlines distribution are presented in figure (6) for solutions obtained with 
UNIFAES scheme, 60x60 grid size. 

 
 

   

   

   

  
Figure 6. Streamlines for UNIFAES, 60x60 grid 

 
 Figure (6) represents the streamline distribution inside the cavity. Results looks to be physically 
realistic and do not shows wavy solutions for UNIFAES 60x60 grid size. Velocities components u and v are 
monitored at cavity center point. Solutions and extrapolated values are listed in table (4). 
 

Table 4. Richardson second-order extrapolation for u and v velocities at center point position 
QUICK 

 u v Test case 
Grid Solution Extrap. Solution Extrap.  

30x30 -0,00307073  0,0008472  Re100, 90
o 

60x60 -0,00322367 -0,00327548 0,0008832 0,0008954 Re100, 90
o 

30x30 -0,00187283  0,0013959  Re100, 30
o 

60x60 -0,00195389 -0,00198135 0,0014929 0,0015257 Re100, 30
o 

30x30 -0,00790846  0,0073137  Re1000, 90
o 

60x60 -0,00553893 -0,00473623 0,0061939 0,0058146 Re1000, 90
o 

30x30 -0,00081448  0,0002720  Re1000, 30
o 

60x60 -0,00003168 0,0002335 0,0003545 0,0003825 Re1000, 30
o 

 
 
 
 
 
 
 
 



Proceedings of COBEM 2011                                                                      21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM                                                                                           October 24-28, 2011, Natal, RN, Brazil 

  

UNIFAES 

 u v Test case 
Grid Solution Extrap. Solution Extrap.  

30x30 -0,00306331  0,0008504  Re100, 90
o 

60x60 -0,00322159 -0,00327521 0,0008837 0,0008949 Re100, 90
o 

30x30 -0,00187033  0,0013986  Re100, 30
o 

60x60 -0,00195319 -0,00198126 0,0014941 0,0015265 Re100, 30
o 

30x30 -0,01036427  0,0038747  Re1000, 90
o 

60x60 -0,01033611 -0,01032657 0,0034299 0,0032792 Re1000, 90
o 

30x30 -0,00083456  0,0002249  Re1000, 30
o 

60x60 -0,00001364 0,00026445 0,0003477 0,0003893 Re1000, 30
o 

 
2

nd
 Order Upwind 

 u v Test case 
Grid Solution Extrap. Solution Extrap.  

30x30 -0,00314596  0,0008359  Re100, 90
o 

60x60 -0,00324218 -0,00327478 0,0008807 0,0008959 Re100, 90
o 

30x30 -0,00189308  0,0013660  Re100, 30
o 

60x60 -0,00195952 -0,00198203 0,0014800 0,0015186 Re100, 30
o 

30x30 -0,01745494  0,0039668  Re1000, 90
o 

60x60 -0,01238579 -0,01066857 0,0028698 0,0024981 Re1000, 90
o 

30x30 -0,00196373  0,0004170  Re1000, 30
o 

60x60 -0,00050121 -0,00000576 0,0003845 0,0003735 Re1000, 30
o 

 
 Velocity comparisons are presented as distribution along center lines in figure 7. Numerical solutions 
obtained with QUICK, UNIFAES and 2

nd
 Order Upwind with 30x30 grid size are compared to solutions 

obtained by Ghia et al (1982), 256x256 grid size and 90
o
 cavity, Mariano et al (2010) IMERSPEC code using 

a Fourier pseudo spectral method with a 128x128 grid size for 90
o
 cavity, and a finite element with SUPG 

(Streamline Upwind Petrov Galerkin) element type obtained with ANSYS with 200x200 grid size for all cases. 
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Figure 7. Velocity distribution along center lines 
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Figure 7 (cont). Velocity distribution along center lines 

 
Figure (7) shows the good agreement of velocity distribution along vertical and horizontal center lines 

to references solutions by Ghia et al (1982) and ANSYS. Velocity distribution along center lines is also 

compared to ANSYS solutions considering L2 and L∞ norms as defined in eq (5) and eq (6) and described 
in figure (5). Table (5) presents the error calculations and the best value for each case is highlighted. 
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where: 

φ is “u” velocity along vertical center line and “v” velocity along horizontal center line 
i is the nodal solution for all nodes along vertical and horizontal center lines 
n is the number of nodes along vertical and horizontal center lines 

 
Table 5. L2 error for “u” and “v” velocity component along center lines 

Best values highlighted 

Re αααα    QUICK 
30x30 

UNIFAES 
30x30 

2
nd

 Order Upwind 
30x30 

QUICK 
60x60 

UNIFAES 
60x60 

2
nd

 Order Upwind 
60x60 

100 90 1,354E-03 1,382E-03 1,045E-03 3,098E-04 3,169E-04 2,477E-04 
100 60 9,085E-04 9,250E-04 7,592E-04 2,143E-04 2,171E-04 1,979E-04 
100 45 7,006E-02 7,064E-04 6,770E-04 1,647E-04 1,644E-04 1,781E-04 
100 30 6,834E-04 6,798E-04 7,443E-04 1,783E-04 1,763E-04 2,056E-04 

500 90 4,695E-02 4,231E-02 5,097E-02 1,394E-02 1,407E-02 1,331E-02 
500 60 5,702E-02 5,786E-02 5,260E-02 2,868E-02 2,887E-02 3,125E-02 
500 45 1,634E-02 1,767E-02 1,268E-02 7,877E-03 8,192E-03 6,995E-03 
500 30 6,146E-03 6,451E-03 5,751E-03 2,954E-03 3,065E-03 2,403E-03 

1000 90 1,578E-01 1,154E-01 1,553E-01 5,280E-02 4,369E-02 5,207E-02 
1000 60 9,179E-02 9,078E-02 7,525E-02 9,432E-02 9,570E-02 1,022E-01 
1000 45 2,039E-02 2,262E-02 2,516E-02 2,757E-02 3,070E-02 2,955E-02 
1000 30 2,226E-02 1,840E-02 2,897E-02 5,696E-03 6,087E-03 5,386E-03 

ANSYS 
QUICK 

UNIFAES 
2

nd
 Order Upwind 

ANSYS 
QUICK 

UNIFAES 
2

nd
 Order Upwind 

ANSYS 
QUICK 

UNIFAES 
2

nd
 Order Upwind 

ANSYS 
QUICK 

UNIFAES 
2

nd
 Order Upwind 

ANSYS 
QUICK 

UNIFAES 
2

nd
 Order Upwind 

ANSYS 
QUICK 

UNIFAES 
2

nd
 Order Upwind 
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L∞ error for “u” and “v” velocity component center lines 
Best values highlighted 

Re αααα    QUICK 
30x30 

UNIFAES 
30x30 

2
nd

 Order Upwind 
30x30 

QUICK 
60x60 

UNIFAES 
60x60 

2
nd

 Order Upwind 
60x60 

100 90 3,197E-04 3,260E-04 2,793E-04 7,644E-05 7,751E-05 6,946E-05 
100 60 2,226E-04 2,237E-04 2,011E-04 5,293E-05 5,315E-05 5,214E-05 
100 45 1,954E-04 1,943E-04 2,119E-04 5,702E-05 5,635E-05 6,530E-05 
100 30 2,618E-04 2,600E-04 2,805E-04 7,788E-05 7,687E-05 8,808E-05 

500 90 1,364E-02 1,169E-02 1,669E-02 4,400E-03 4,397E-03 5,101E-03 
500 60 1,405E-02 1,403E-02 1,349E-02 7,012E-03 7,014E-03 7,910E-03 
500 45 6,935E-03 7,455E-03 5,164E-03 3,107E-03 3,222E-03 2,673E-03 
500 30 2,639E-03 2,731E-03 2,148E-03 1,270E-03 1,312E-03 1,026E-03 

1000 90 4,776E-02 3,284E-02 5,019E-02 1,918E-02 1,684E-02 2,310E-02 
1000 60 3,682E-02 3,517E-02 3,047E-02 3,233E-02 3,293E-02 3,718E-02 
1000 45 8,913E-03 1,167E-02 8,381E-03 1,553E-02 1,730E-02 1,712E-02 
1000 30 1,083E-02 8,583E-03 1,426E-02 3,059E-03 3,389E-03 2,456E-03 

 

Table (5) shows the L2 and L∞ errors for u and v velocities along center lines. From 24 test cases, for 
L2 error measure UNIFAES is the best in 7 cases, 2

nd
 Order Upwind is the best in 13 cases and QUICK is 

the best in 4 cases and for L∞ error measure UNIFAES is the best in 9 cases, 2
nd

 Order Upwind is the best in 

12 cases and QUICK is the best in 3 cases. L2 error means that all curve is near the reference and the L∞ 

error means the most distant value from reference. At this point of view, the best scheme is the one which 
both errors are smaller. This happens in 11 cases for 2

nd
 Order Upwind, 6 cases for UNIFAES and 3 cases 

for QUICK. All data in table (5) is calculated considering ANSYS solutions as reference. 
 The final comparison to be done is the vortex identification. As described in figure (5) there are three 
recirculation zones that arise with flow distribution. Table (6) shows the center position of each vortex, if 
detected. As FLOW code solves the governing equations for primary variables and for grid refinement as 

described before, the vortex center is identified using TECPLOT software with a 10
-8

 tolerance. Computed 
values are compared to four different references for 90

o
 cavity.  

 
Table 6. Vortex locations for 90º cavity flow – best values highlighted 

(x,y positions are normalized) 

Re Reference Central vortex  Left vortex  Right vortex  
  X y Dist. x y Dist. x Y Dist. 

100 Ghia et al (1982) 0,6172 0,7344  0,0313 0,0391  0,9453 0,0625  
 Hou et al (1995) 0,6196 0,7373  0,0353 0,0350  0,9451 0,0627  
 Arruda (2004) 0,6200 0,7800  na na  na na  
 Mariano et al (2010) 0,6172 0,7365  0,022 0,017  0,9525 0,0634  

 UNIFAES 30x30 0,6213 0,7421 0.0087 nd nd nd 0,9518 0,0535 0.0111 
 QUICK 30x30 0,6209 0,7418 0.0083 nd nd nd 0,9515 0,0538 0.0106 
 2

nd
 Order Upwind 30x30 0,6186 0,7388 0.0046 nd nd nd 0,9491 0,0570 0.0067 

 UNIFAES 60x60 0,6174 0,7389 0.0045 0,0334 0,0334 0.0061 0,9441 0,0609 0.0020 
 QUICK 60x60 0,6178 0,7389 0.0045 0,0339 0,0332 0.0064 0,9440 0,0610 0.0020 
 2

nd
 Order Upwind 60x60 0,6169 0,7380 0.0044 0,0337 0,0331 0.0064 0,9435 0,0618 0.0019 

1000 Ghia et al (1982) 0,5313 0,5625  0,0859 0,0781  0,8594 0,1094  
 Hou et al (1995) 0,5333 0,5647  0,0902 0,0784  0,8667 0,1137  
 Arruda (2004) 0,5300 0,5800  0,0900 0,0800  0,8400 0,1300  
 Mariano et al (2010) 0,5269 0,5612  0,1535 0,0699  0,8361 0,1151  

 UNIFAES 30x30 0,5485 0,5952 0.0369 0,0790 0,0639 0.0158 0,8454 0,1334 0.0240 
 QUICK 30x30 0,5863 0,5862 0.0599 nd nd nd 0,8505 0,1262 0.0190 
 2

nd
 Order Upwind 30x30 0,5495 0,6324 0.0722 0,1297 0,1030 0.0504 0,8099 0,1452 0.0610 

 UNIFAES 60x60 0,5332 0,5766 0.0142 0,0799 0,0714 0.0089 0,8493 0,1227 0.0167 
 QUICK 60x60 0,5499 0,5525 0.0211 0,0850 0,0812 0.0032 0,8623 0,1209 0.0119 
 2

nd
 Order Upwind 60x60 0,5298 0,5845 0.0220 0,0835 0,0750 0.0039 0,8386 0,1263 0.0268 

Grid size: Mariano et al (2010) - 128x128, Ghia et al (1982) – 256x256, Arruda (2004) – , Hou et al (1995) – 256x256 
nd – not detected   na – not available  best values compared to Ghia et al (1982) 

 
Table (6) shows the vortex center position x, y which ones are plotted in figure (6). For Re=100, 

30x30 grid size none of the schemes could predict vortex on the left side of cavity, and for Re=1000, 30x30 
grid size QUICK is the one that could not predict vortex on the left side of cavity. All the other test cases all 
vortex region could be predicted by all schemes. 
 
4. CONCLUSION 
 All numerical solutions performed have a single purpose; evaluate the scheme behavior in problems 
with some kind of special aspect. Here were used the finite element based code ANSYS to generate results 
for comparative issues, IMERSPEC code results obtained by Mariano et al (2010) were used as comparative 
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values as well. These two set of results were obtained with refined grids 200x200 and 128x128 respectively. 
FLOW code results were obtained for 30x30 and 60x60 grid size. 

The main objective here is compare UNIFAES to QUICK and 2
nd

 Order Upwind schemes. These two 
last schemes are older ones and already have proved its quality and today they are incorporated to 

FLUENT software that is a very large and complete simulation tool. UNIFAES has been tested for some 
cases considering the whole universe of fluid flow problems and always had a very good behavior in 
convergence and accuracy, not different in this particular study. 
 Again UNIFAES shows to be a very robust scheme compared to two traditional ones, QUICK and 2

nd
 

Order Upwind. Results demonstrated good behavior in convergence and accuracy to all cases with coarser 
and finer grids, lower and higher Reynolds. 

Among 24 comparisons UNIFAES is the best in 7 cases, 2
nd

 Order Upwind is the best in 6 cases, 
QUICK is the best in 8 cases and QUICK and 2

nd
 Order Upwind are tied in 1 case. These comparisons are 

separated for “x” and “y” coordinates, the best approximation for each dimension. Considering the distance 
vector from center point (calculated)-to-center point (reference) from 11 cases UNIFAES is the best in 4 
cases mostly when Re=1000, 2

nd
 Order Upwind is the best in 4 cases all when Re=100 and QUICK is the 

best in 3 cases all when Re=1000. 
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