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Abstract. Compound channels are found in several branches of the engineering, from rod bundles of nuclear reactors 

and heat exchangers to irrigation channels with flood plains in hydraulical engineering, or finned channels for cooling 

of electronic devices. This paper presents a numerical investigation of the developing flow in a compound channel 

formed by a rectangular main channel and a slot in one of the sidewalls. A three-dimensional Large Eddy Simulation 

computational code with the classic model of Smagorinsky is introduced, where the transient flow is modeled through 

the conservation equations of mass and momentum of a quasi-incompressible, isothermal continuous medium. Finite 

Element Method is used and Taylor-Galerkin scheme is applied for time and space discretization and to link governing 

equations. The discretization of the computing domain is made by means of linear hexahedrical elements. Numerical 

results of velocity profile show the development of a shear layer in good agreement with experimental results obtained 

with Pitot tube and hot wires.  
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1. INTRODUCTION  

 

 

The cross section of a compound channel is formed by a narrow region (gap) connected to a wider one, or, 

conversely, a narrow region connecting two wider regions. In nuclear reactors, the narrow gap between the rods 

connects parallel sub-channels. The investigation of the turbulent flow in this channel type show peculiar characteristics 

in relation to stress distribution and the coefficient of turbulent heat transfer on the region between two channels. 

“Experimental measurements in a single line rod bundle, showed high values of turbulence intensity for the axial 

and azimuthal components of velocity in the region of the gap and a strong relationship between the increase in these 

quantities and decreasing of the distance between the tubes” (Möller, 1991). Fluctuations of the different velocity 

components showed a quasi-periodic behavior close to gap, exactly as identified previously in Rowe et al. (1974), 

which suggested that these pulsations of the flow were responsible for the increase in turbulent intensities along the gap.  

The velocity distribution and characteristics of the turbulent flow in channels with rectangular gap in the sidewall at 

a range of Reynolds numbers from 2300 to 100000 was investigated experimentally by Meyer and Rehme (1995). Flow 

visualizations showed consistent, stable and equally spaced structures transported by the mean flow inside the gap. 

The characteristics of the turbulent flow in two channels connected by a rectangular gap, near the upper wall, using 

large eddy simulation with periodic boundary conditions in the main flow direction was presented in Biemüller et al. 

(1996). The height and width of the channel were respectively 180 mm and 331.6 mm with a length of 504 mm. The 

gap that connects the two main channels has height d and width g of 10.20 mm and 40.6 mm respectively, being the 

ratio g/d = 4. The Reynolds number of the simulation ranged from 3300 to 580000. The results showed peak Reynolds 

stresses along the gap and large vortices carried by the mean flow rotating in opposite directions, as modeled by Möller 

(1991). 

Merzari et al. (2008), report a detailed LES study to capture the pulsating flow in compound channels in a 

rectangular duct forming two wide regions connected by a gap is presented.  

In his Thesis, Goulart (2009), established the relation between the distribution of velocity and velocity fluctuations 

and the mixing layer theory and proposed a Strouhal number definition to describe the dimensionless frequency of the 

pulsations 

Recently, Meyer (2010), made a comprehensive review of the flow pulsations in rod bundles, including the 

knowledge obtained in several types of compound channels. He concludes that the origin of this phenomenon is still 

disputed and that there is an analogy between flow pulsations and the mixing layer formed by two flows with different 

velocities merging from a split plate. 

The purpose of this paper is to present a numerical investigation for the study of the developing turbulent flow in 

compound channels. The numerical code employs the finite element method to perform large eddy simulation of the 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

transient, quasi-incompressible, three-dimensional channel flow (Petry and Awruch, 2006), using the Smagorinsky 

model, with eight node hexahedrical elements solved by an explicit Taylor-Galerkin scheme. The geometry of the 

channel consists on a main channel connected to a gap on a side wall. Results are compared with experimental results 

obtained with Pitot tube and hot wires in an aerodynamic channel.  

 

2. TEST SECTION AND COMPUTATIONAL DOMAIN 

The investigations were made in a rectangular channel with 146 mm height and 193 mm in width, with a gap in the 

side wall in which the flow develops. The gap was 2000 mm long with a depth d = 80 mm and width g = 20 mm, thus 

having a d/g-ratio equal to 4. The working fluid used is air at room temperature, driven by a centrifugal blower passing 

through a diffuser, a homogenizer and two screens, reaching the test section with turbulence intensity less than 1%. At 

150 mm downstream of the screens a Pitot tube is located, to measure the reference velocity UREF, which is 

approximately equal to the mean velocity in the channel. 

The Reynolds numbers of experiment and simulation were calculated using the mean velocity of the flow in the test 

section and its hydraulic-diameter, Dh = 131.08 mm, ranging from Re = 100 to Re = 85,000.  

Figure 1 (a) shows a schematic view of the test section studied, where the red line shows the location of the gap 

while Fig. 1 (b) and (c) shows schemes of the cross section with location of hot wire measurements.  

The average values of axial component of velocity were measured using a Pitot tube with outside diameter of     

1.25 mm. The velocity fluctuations of the axial components u, cross w, were evaluated via hot wire anemometry, using 

a constant temperature probe DANTEC StreamLine. In the simultaneous measurement of two velocity components a 

double wire probe was used, which has a wire perpendicular to the main flow and a slant (45°) wire. In the calibration 

of this probe, the method proposed by Collins and Williams (1959), was used, with modifications reported by Olinto 

and Möller (2004).  

The Pitot tube and hot wire probe were moved along the symmetry line of the channel by means of a tri-axial 

positioner. In this work, the axial velocity component, u, is parallel to main flow direction and the transverse 

component, w, is parallel to the symmetry line. Data acquisition of hot wire signals was done using a 16 bit analog 

digital converter board (National Instruments 9215-A), and a sampling frequency of 3 KHz. The length of the records 

was 21.84 s. The average error in determining the velocity with the hot wire anemometer was approximately 3%. 

In the computational domain, the channel is represented by a uniform mesh composed by 85,644 nodes. The 

channel geometry and the mesh are shown respectively in Figure 2 and represent accurately the test section. 

 

 

 

 

 

 

 

Figure 1.  Schematic view of the test section:  

a) side view of the channel, b) cross section of the channel, c) location of hot wire measurements. 
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Figure 2.  Computational grid 

 

 

 

3. MATHEMATICAL AND NUMERICAL ASPECTS 

 

3.1. Governing equations 

In large eddy simulations, balance equations for mass, energy and momentum of a viscous, quasi-incompressible, 

three-dimensional, transient and isothermal flow of a Newtonian fluid (Kawahara and Hirano, 1983; Findikakis and 

Street, 1982 and Petry and Awruch, 2006) are decomposed into large-scale field (identified by the bar over the variable) 

and subgrid scale field (identified by the apostrophe). Filtered velocity and pressure are 

iii v + v = v           p + p = p                   (1) 

Filtered equations of mass and momentum are given by: 
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With boundary conditions: 
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and the corresponding initial conditions: 

   0ii v̂v                 ,0tin         (6)   

0p̂p                ,0tin         (7)      

Where: 

  fluid density (kg/m
3
) 

vi  velocity component in direction i (m/s) 

xi  coordinate in i direction (m) 

ij  Kronecker delta 

iv̂  velocity i values prescribed on the boundary indicated (m/s) 

jn director cosine of the vector normal to the boundary 

it  prescribed values of surface forces on the boundary (N) 

  Coefficient of dynamic viscosity of the fluid (Pa.s) 

 Coefficient of viscosity of the fluid volume (Pa.s) 

C velocity of sound propagation (m/s) 

  kinematic viscosity (m
2
/s) 

iv  component, corresponding to large scales, the velocity vector in the direction xi (m/s). 

p Pressure component corresponding to large scales (Pa). 

v'i  velocity component in the direction xi, corresponding to the subgrid scales (m/s) 

Lij = jiji v vv v   terms of Leonard. 

Cij = jiji v 'v' vv   cross terms. 

'v'v ji  Reynolds tensor subgrid scale (m
2
/s

2
). 

  problem domain 

v face boundary with prescribed velocity 

t face with natural boundary condition 

Leonard and cross terms Lij and Cij has been neglected in Findikakis and Street (1983). Petry and Awruch (2006) 

confirm that the inclusion of these terms do not significantly affect the results and increase around 20% processing time. 

Therefore, neglecting Leonard’s and cross terms, Eqs. (2) and (3), with the initial and boundary conditions given by  

Eq. (4), (5), (6) and (7) are the governing equations. For the solution of the system a subgrid scale model must be used.  

The quasi incompressible analysis assumes a constant density throughout the flow domain, but the sound velocity is 

not considered infinite. As a result of this consideration, time derivative of the pressure appears in mass conservation 

equation (Eq. 2), simplifying the handling of the equation system (Petry and Awruch, 2006). 

 

 

3.2. Subgrid Scale Models 

Both models are implemented based on the concept of turbulent viscosity and using the Boussinesq hypothesis, the 

Reynolds stress subgrid scales are given by: 
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where t is the turbulent viscosity. 

For incompressible flows, this equation is usually modified by introducing a subgrid scale kinetic energy term to 

make the model compatible with the mass conservation equation for incompressible flows (Hinze, 1975). But in this 

work, the equation of continuity is modified for quasi-incompressible flows, maintaining, therefore, Eq. (8) in its 

original form. 

The Smagorinsky model has been traditionally used to represent the effect of the subgrid scales in large eddy 

simulation (Findikakis and Street, 1983; Petry and Awruch, 2006), being a turbulent viscosity model in which the 

Reynolds stresses are given by a subgrid scale, Eq. (8), and the turbulent viscosity is defined as: 

 

S C=
2

2
St                (9) 

Where CS is the Smagorinsky constant and other terms are given by:  
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As boundary conditions at the entrance, a uniform velocity profile was adopted (v1 = V (y), v2 = 0, v3 = 0) and non-

slip condition (v1 = v2 = v3 = 0) for all walls. For the outlet, natural boundary conditions (t1 = t2 = t3 = 0) were prescribed 

(see Eq. (5)). The initial conditions used are v1 = Uref (steady value), v2 = v3 = p = 0.  

 

3.3 Numerical Simulation 

 

Large eddy simulations of the three-dimensional flow in the compound channel investigated were performed with 

Reynolds number Re=100, 3300 and 10000. When a simulation is completed, the resulting velocity field is used as 

initial condition for the next simulation with a higher Reynolds number. 

The code uses a parallel processing OpenMP technique, which allows the solution of large and complex problems 

and has the advantage of automatically initiate a scan of available processors, distributes tasks and dynamically adjusts 

the partitions for the number of processors and each processor load. The language of the code is FORTRAN 95, using 

high performance techniques. To ensure its portability and facilitate changes the code has a modular structure (each 

module is a set of subroutines stored in a different file), allowing a selective compilation by adding or deleting routines. 

The time step used for Re = 100 was 5x10
-4

 s, Re = 3300 and Re = 10000 it was 1x10
-5

 s, the Smagorinsky 

constant, Cs, was 0.23. 

 

 

4. RESULTS 

  

Figure 3 shows the axial velocity contours obtained in channel, 50mm before outlet for Re = 3300. It is observed a 

region of maximum velocity occurring in the main channel and a level of nearly constant velocity in the gap region. The 

excessive deflection of isovelocity lines suggests that the simulation exaggerates the secondary flows; however, these 

results are in accordance with experimental results in Meyer and Rehme (1995) and recent simulations in Home (2009). 

The presence of coherent structures is firstly observed by the presence of peaks in spectra of axial and transversal 

velocity fluctuations (toward the gap). By using the Strouhal number definition proposed in Meyer and Rehme (1995), 

given by 
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the frequency obtained, with Str=0.066, for the Reynolds number investigated is f=16.5 Hz. Figure 4 shows maximal 

values of the spectra at 25Hz, higher than the calculated value, but still in the same order of magnitude. 

Figure 5 shows the axial mean velocity profiles along the symmetry line of the channel are shown as a function 

of the position z/d =1, corresponds to the edge of the gap. In spite of the difference in the Reynolds number, the code 

underestimates the flow velocity in the gap region. This is attributed to the coarse grid and due to the Smagorinsky 

model employed. The results in this graph were not compared to Re = 85000 because of the time step of integration is 

very small, which results in long processing time in such high Reynolds numbers.  

 

 

 

Figure 3.  Contours of axial mean velocity, 50 mm upstream of the channel outlet, 

 (X/L = 0.98)  - Re = 3300 - numerical. 

 

 

 

 
a 

 
b 

 
c 

 

Figure 4.  Autospectral density of axial (blue) and transversal (red) velocity fluctuation:  

a) P1;   b) P2;   c) P3.  Location in Fig. 1-c. 

 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

Figure 5.  Axial velocity profiles as function of the dimensionless parameter z/d. 

 

Figure 6 shows the normalized by the average friction velocity U, turbulent shear stress U’W’ along the symmetry 

line.  The shear stress U’W’ parallel to the gap is zero at the symmetry line between the two channels at the center of 

the gap.  

These results are in accordance with experimental results in Meyer and Rehme (1995) and the Reynolds stresses 

measured in the open water channel by Shiono and Knight (1991), show very similar distribution. 

Figure 7 shows the map of isovorticity in the plane of the gap. The vorticity in the XZ plane is given by Eq. (14). 
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Isovorticity values are higher than the expected near the walls. In the extremity of the gap, lines show the presence 

of a wake like structure, in the region of corresponding to z/d=0.8 to 1.7. 

 

 

 

Figure 6.  Normalized Turbulent Shear Stress U’W’/U. 
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Figure 7. Isovorticity Ωy distribution (numerical: Re = 3300) 

 

 

5. CONCLUSIONS 

 

This paper presents a finite element computer code for solving the turbulent flow in a compound channel formed by 

a rectangular cross section region connected to a slot. The numerical methodology is the large eddy simulation with a 

Smagorinsky model. The turbulent flow is considered quasi-incompressible, isothermal and transient. 

The results are consistent with the experimental data. The coarse grid adopted allowed the fast debugging of the 

code but the velocity in the gap was underestimated. The increase of the Reynolds number will allow direct comparison 

with the experimental results. 

The use of the numerical code applied to the studied problem has shown the ability of this methodology to simulate 

complex turbulent flows, without limitations on memory allocation, although the very short integration time steps leads 

to long processing times as the Reynolds number increases. The use of a more refined mesh, now in progress, will bring 

improvements in flow analysis mainly in the region of the gap. 
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