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Abstract. Photogrammetric maps are of extreme importance in orderdaitor large areas periodically, for example,
possible tasks might be the monitoring of forests, invaglaats, urban growth, etc. These maps are commonly built
using images from satellites or planes. In order to obtainaprwith real proportions, an operation of distortion of tiees
images is realized using information provided by Ground @srPoints and triangulating natural features in the scene
or using another a priori known map. The utilization of an Uanmed Aerial Vehicle (UAV) provides a safer solution
when compared to a plane mainly due to the non requirementaa It is also a more flexible solution when compared
to satellites because an UAV can fly again some hours or evemtesi after the first time, while a satellite is available in
some days for the same area. Some parts of the map might nisilide because of clouds and the UAV needs to fly again
to recover these parts (flying below the clouds if necessdérgiochastic sensor fusion method is proposed that combine
computational vision techniques, inertial sensors and GP&der to estimate both the three dimensional sparse map
and the plane position using the technique known as SLAMu{fineous Localization and Mapping). The complete
map is generated while projecting the images into the spanap. The main advantage of this method is that the map is
constructed without the use of a priori knowledge of theaierr The main contributions of this work are: the integratio

of SLAM techniques into the Aerophotogrammetry field andiévelopment of a method that can realize a 3D mapping
without the use of a priori knowledge of the terrain.
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1. INTRODUCTION

Aerial photos show a lot of information that can be used fdramrplanning, detect invasive plants in farms, illegal
deforestation, tragedies caused by storms, hurricaneéliedlin et al., 2000; van Klinkeret al, 2007). These photos
cannot be used singly because distance commonly needs te&sured and the terrain generates distortions in these
photos that make it impossible to do with high precision aochetimes the distance is bigger than one photo area.
The Photogrammetric field makes it possible. Photos arentbiea plane or satellite and they are distorted in order to
compensate the terrain and mosaicked. This mosaic neeégjedneferenced to be possible measure distances.

Each image needs to have some points measured with a GPS spoth(@round control points), because this inform
an initial orientation and compute the camera positione/Afihat, natural features are identified in each image and the
are triangulated for the purpose of computing its elevatidsing this elevation, each image is projected perspdygtive
the surface and the final image is formed projecting theyogrdimally. This is a manual process and spends a lot of time.

This paper proposes the use of an UAV (Unmanned Aerial Viehtoltake these pictures and also a stochastic sensor
fusion approach to construct these mosaics. Simulati@sade in order to validate the proposal method and is intende
to be implemented it using real data collected from the UAVo&pa from XMobots (Figure 1). The advantages of
using an UAV is that it is more secure than a conventionalelgnere is no crew, so no one physically involved in an
accident), the availability is bigger than a satellite, cperate for hours or even all day long without stress of that pi
(they can be replaced during the operation). The stochsestisor fusion approach proposed in this paper is a technique
studied in robotic field called SLAM (Simultaneous Locatina and Mapping) (Durrant-Whyte and Bailey, 2006a,b).
This approach is commonly used in terrain robots and thexesame works using it with UAVs (Brysoet al,, 2009;
Bryson and Sukkarieh, 2009; Térnqvédtal., 2009).

The chapter 2 details the SLAM algorithm explaining the prgon model in chapter 2.1, the sensors models in
chapters 2.2, 2.3 and 2.4. Chapter 3 shows some resultsetttay simulation and chapter 4 concludes the paper.

2. METHOD

The aerophotogrammetry deals with the problem of trajgatstimation and terrain estimation separately. It needs
ground control points with high precision in order to con®tite camera pose since the precision of sensors embedded
are not enough to be used. The technique SLAM uses sensamiation to estimate the environment and simultaneously
the position of the vehicle in the environment. Estimatibasome better because these two kinds of information {terra
and vehicle position) are statistically correlated, themugd control points can be measured with less precisiovam e
be discarded.

SLAM is based on stochastic filters as Kalman Filter (Kalme960), Extended Kalman Filter (Jazwinski, 1970),
Particle Filter (Gordoret al,, 1993; Schon, 2006), Marginalized Particle Filter (Sclebal, 2006), etc. The Extended
Kalman Filter is the chosen one to develop this applicati@cause the models are nonlinear and the computational cost
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Figure 1. UAV Apoena from XMobots

is less than Particle Filter and Marginalized ParticlegFilt
These filters deal with the problem of recursive estimatibprobability density functiom(x:|y: ), wherex; andy;
are state and measurements in tilmeespectively. In order to solve thig; andy, are written as:

Tip1 = f(ae,ug,ve) (1a)

Yo = hlze,e) (1b)

, Wherev, ande; are process noise and measurement noise, respecfivslihe prediction model antd sensor model.
This paper develops a prediction and sensor model to estithatterrain and UAV position. The used sensors are
a camera to identify natural features on the terrain, a GR&tpossible the georeferencing of the terrain and a IMU
to increase the precision of the UAV pose estimation. Thisre@ch uses natural control points and does not need

measurements on the spot. The deduction of the filter is mottbpe of this work and a introduction of it can be found
in (Welch and Bishop, 2001).

2.1 Prediction Model

As there are three sensors used in this work, it is necesséinedsome coordinate systems:

e Earth (e): The trajectory of the UAV and the terrain are estimatedia toordinate system. It is fixed to Earth.
e Camera (c): Coordinate system attached to the camera. Featureseantfigld in this coordinate system.

e Body (b): The measurements of the IMU are made in this coordinatesys

The prediction model is based on Hol (2008) added featuredanatesn, to the state vector:

5b

xp=(by b b5 ¢ wh, 6L, O, mix ... may)" ()

w,t
, Whereb$ is the position of IMU expressed in the Earth systéfris its velocity and¢ its accelerationg?® its orientation
with respect to the earth systewﬁb’t its angular veIocityé&t gyroscope biasSZ,t accelerometer bias and, ; is the 3D
position of natural features on the terrain witk- 1... M.

Defined the state vector and the coordinates system, thepoadnodel is given by:

T2

by, = b§+Tb§+7?5§ (3a)
iy = bf + T (3b)
by = b+, (3¢)
T
a5 = emp(-5wh) © ¢ (3d)
wi?b,m = wi’b,ﬁvfi,t (3e)
5Z,t+1 = 6Z,t+v§w,t (30
52,15-1—1 = 5Z,t+v§a,t (39)

Mje41 = My (3h)
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, Where quaternion multiplication and exponential are defias:

Po o Pogo — P-4
- 4
(P)®<q> (poq+qop+p><q> (42)
cos ||v||
= ) . 4
«ap(v) ( o sin o] ) (4b)

A model of constant acceleration is used to describe théiposvelocity and acceleration dynamic. The process noise
added in acceleration term is assumed to be enough to madeddhmovement. The quaternion dynamic is described as
a constant angular velocity with noise added in the last 8mnes terms are modeled as a random walk. Finally, features
are described as stationary.

2.2 Inertial Update M odel

The IMU measurement vector is:

Yrmue = (y?;f yz;,t)T )

, Wherey, . is the acceleration measured by the accelerometerg,anis the angular velocity measured by gyroscopes.
Both measurements are made with respect to the body cotediystem.
The IMU sensor model is given by:

Yar = R0 —g°) +0,, +el, (6a)
Yot = wzb,t =+ 53:;,t + 62,7,5 (Gb)
, where R’ is the rotation from Earth coordinate system to IMU body irtricéal form computed from quaterniog}®,
g¢ is the gravity acceleration with respect to Earth coordirgtstem andzf;}t and e’;}’t are measurement noises from
accelerometers and gyroscopes, respectively.

2.3 GPSUpdate Model

A GPS receiver makes observations of the vehicle positiom r@spect to the Earth coordinate system. The measured
values are assumed to be metric valuespositions in WGS84 are converted to metric values.

yapst = bf (7)

The distance between IMU and GPS is not considered in thetiequaecause a common GPS noise (order of 10
meters) is much bigger than this distance.

2.4 Vision Update M odel

The process of image formation consists basically in thieess The first consists of the light incidence on the CCD
sensor described as a perspective projection where thergasn@odeled through a normalized pinhole camera model.
The second is the distortion caused by lens. The last one iditfitalization of the image made by CCD sensor. These
steps are described as:

p'= (Ao Do P)(p°) (8)

, WhereP, is the normalized pinhole camera modgljs the lens distortion model, anlis the digitalization model.

The normalized pinhole camera model (Hartley and Zissey2@00; Karlstroem, 2007; Hol, 2008; Criminisi al,,
1997) represents the projection of a 3D point in the imagaelaFigure 2 describes a pinhole camera model and the
normalized one is obtained usirfg= 1:

Tn 1000 )}f
Zl yn |=10 1 0 0 7 9)
1 0010 |

Lens distortion is a phenomenon that all lens causes in im@ageit is generally a radial distortion that can be modeled
as (Hol, 2008):

piy = (U4 ke ||p5]|” + ko |2 ]| ), (10)
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Figure 2. Pinhole camera model

, Wherek; are the distortion coefficientg}, is a point in distorted image ang, in normalized image.
In order to decrease the equation complexity, each imageatuffe is preprocessed rearranging the Equation 8 and
the normalized images are used in measurement model.

pn =D o ATH() (11)

The camera sensor model for each feature in an image is ba#igelone developed by Torngvistal. (2009):

1 xry
ot = Um, t = — v ° 12
Yot = Ymyt Z§<yt,)+€,t (12)
, Where
7
mi,=| v | =RG")R(g) (s —bF) +1° (13)
&2

andre€ is the distance between IMU and camera in the camera cotedigane.
3. SSIMULATIONS

Three situations of sensor fusion are compared in thismeclihe first one is a fusion of GPS and IMU without use
of SLAM, because there is not a sensor that captures infawmatf the environment. The second one is a fusion of IMU
and Camera. This is a studied approach in situations of waras®os when GPS may not be available or GPS failures
(Bryson and Sukkarieh, 2008; Tornqvegtal., 2009). The last one is the GPS, IMU and Camera fusion praboséis
work.

Data is generated with the UAV making a maneuver at 800 mefaltitude and an eight-shaped trajectory is executed
by it. Features are randomly generated over a 3D surfacel@satibes the terrain and a descriptor is associated for eac
one. These descriptors simulate the one that would be @autainth real images using algorithms like SIFT (Scale-
invariant feature transform) or SURF (Speeded Up RobustuFes), for example. They are used to match features
identified in a new image with the others in the state vectabld 1 shows the characteristics of each sensor and Table 2
the noise values used in the filter. Sensor noise values ngbi$iwork are typical of the cheapest sensors availablesn t
market.

IMU
Samplerate 100Hz
GPS
Samplerate 12.5Hz
Camera
Samplerate 12.5Hz
Resolution 640 x 480 pizel
Field of view 60degrees

Table 1. Sensor characteristics

Figure 3 shows the three simulations. The IMU and Cameraosénsion are not enough to estimate the terrain with
high precision because there is not a real absolute referédibough features positions are static, it is not a reabalie
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Accelerometer measurement noise 3.9m,/s°
Gyroscope measurement noise 0.38rad/s
GPS measurement noise 10m
Camera measurement noise 0.035
Acceleration process noise 0.1m/s?
Angular velocity process noise | 0.03rad/s
Gyroscope bias process noise| 0.5mrad/s
Accelerometer bias process noige 0.5m/s>
Table 2. Filter Settings

reference because they are estimated based in the otharslat@nd a drift will always be present. This drift occurs
when new features are being added in the filter. After thatdibplacement in terrain and trajectory will be practicall
constant. This drift in terrain and trajectory can be natizefigure 3(b) and figure 4.

When a GPS is fused in the filter, this drift is not present aorgbecause now it is the real absolute reference. The
trajectory estimated by GPS and IMU configuration preseetsa ofog ps ryvv = 6.9m and the one estimated by GPS,
IMU and Camera presents a errorf ps ravu,cam = 2.2m. This can be seen throught Figure 4.

A feature position error analysis is made in Figure 5. Th&olhiem of Figure 5(b) show the error caused by the drift
in IMU and Camera sensor fusion configuration. The GPS, IM)@amera configuration presents a more precise result
and a error ob yeqture = 6.6m, that is practically a common GPS precision.

4. CONCLUSION

This work has been developed to generate terrain estimafithna sensor fusion approach using IMU, GPS and a
camera. A SLAM approach is suggested in order to simplifyuthigal procedures of Aerophotogrammetry and decrease
or even eliminate needing of ground control points colattiSimulations have been shown that it is possible obtginin
terrain estimation with equivalent precisions of a GPSgi8w cost sensors. The use of an IMU makes the system robust
of GPS failures once the estimation can follow some time wiitbrt drifts.
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