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Abstract. Thin steel plates are used in a great variety ofieeering systems, such as deck and bottom of ship
structures, and platforms of offshore structurebeWthese plates are subjected to compressivedotitey are prone

to instability or buckling. Furthermore, it is vepften necessary to have holes in the plate elesrfentinspection,
maintenance, and service purposes. The presenbesd# holes may significantly alter the plate dighiThe objective

of the present study is to investigate the effédhe hole dimension and location on the elastickting load of
rectangular plates subjected to uniform uniaxiatidnad. The ANSYSsoftware, based on Finite Element Method
(FEM), is used for assessing the plate bucklingdJoand the Lanczos method is applied to the salutib the
corresponding eingenvalue problem. The finite elgnstudies demonstrate that holes can either deer@a increase

a plate’s critical elastic buckling load depending the hole size and position, and that additioleaskarches into this
subject are justified.
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1. INTRODUCTION

Many thin-walled structures contain holes. In bedginspection access holes are detailed in thgdland/or web
of steel box girders. In airplanes, window cutoexsend along the full length of the fuselage antéfi@an also be
found in the ribs attached to the main spar of igplame wing (Moen and Schafer, 2009). In marine affshore
structures, the perforated panels are used in dadkbottom of ship hulls and in oil and gas platfer Basically,
cutouts are often located in plates to make a vi@gcess or to reduce the total weight of the siinec

Therefore, there are several structural situatithveg use perforated plates. When those plates ared to
compression loads, the structure could buckledfltad exceeds the critical load. Thus, to know tiwg/phenomenon
occurs and to analyze the buckling behavior oféhparforated panels has great importance for aciesft structural
design.

The elastic buckling is an instability phenomenloat ican occur if a slender and thin-walled platar(@ or curved)
is subjected to axial pressure. At a certain gimétical load the plate will suddenly bend in that-of-plane transverse
direction. The compressive force could besides ngnfiom pure axial compression, also be generajetiemding
moment, shear or local concentrated loads, or gir@ucombination among these (Real and Isoldi, 2010

For plates without holes, the critical load canebaluated analytically. Figure 1 considers a pédfeftat plate of
lengtha, width b and thickness, simply supported on all four sides and subje¢tedniform compressive forcé\x,
per unit length in the-direction (uniaxial compression).
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Figure 1. Plate geometry and loading

The critical buckling load per unit lengtN,,, can be written as (Wang et al., 2005):

Ncr =k—— 1)
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where k is a dimensionless buckling coefficient of thetpland depends on the type of loading, edge support
conditions, and the plate aspect ratfo, while D is the plate bending stiffness given by:

Et3
D= 2
112 (2

whereE andv are the Young’s modulus and Poisson’s ratio ofollaée material, respectively.

Furthermore, if the critical laod\,, is divided by the plate thicknedsthe critical buckling stresgr,, is obtained.

For perforated plates, the critical buckling loaah de obtained numerically, being thg of Eq. (2) used to validate
the computational modeling and also as a refereatge for comparisons between the behavior of platgh and
without holes.

As earlier mentioned, the presence of holes incsiral plate elements is almost inevitable for ewjon,
maintenance and service purpose. The presenceesé tholes redistributes the membrane stresseseirplétes,
significantly altering their stability. For thisason, the buckling of such perforated panels hesived the attention of
many researchers over the past years.

El-Sawy and Nasmy (2001) have analyzed the inflaesfcthe hole dimension, shape and location inbtiekling
stress of thin plates with different aspect ratdsen and Schafer (2009) have developed closed-éxmessions for
approximating the influence of single or multiplelds on the critical elastic buckling stress oftgdain bending or
compression that were validated by the Finite ElnMethod (FEM). Cheng and Zhao (2010) have focubedt
studies on the cutout-strengthening of perforated| plates subjected to uniaxial compressive lo&tmizu (2007)
has showed that, when a plate has a hole, comprestsesses appear locally near the hole underséddoad, and the
compression stress may cause local buckling —dkealled tension buckling — of the plate.

The aim of this work is to study numerically thdeet of circular hole size and location on theicait elastic
buckling load of simply supported rectangular pdadebjected to uniform uniaxial load. The resutts @mpared with
the critical load of the plate without holes. Tabuze the influence of circular hole size in thiical load, plates with
five different aspect ratia/b = 1, 2, 3, 4 and 5 (being the widimaintained constant and equal to 1.00 m) were;used
where six different hole diameter were considefed0, 0.20, 0.30, 0.40, 0.50 and 0.60 m. After,thatstudy the
influence of hole location, the best result earbbtained was adopted as reference, and the posifithe hole was
investigated. The elastic buckling behavior of dyrgupported plates with and without holes was iolg with shell
finite element eigenvalue buckling analyses ushrg ANSYS' package. The Lanczos Method was used to solve the
corresponding eingenvalue problem.

The results obtained indicate that the presenceirofilar holes in the plates produce a new distidmuof the
membrane stress, comparing with the stress behaf/@mplate without hole. Therefore, depending o plate aspect
ratio and hole dimension and position, the critlmatkling load can be superior or inferior to tléerence value (plate
without hole).

2. METHOD OF ANALYSIS

Many problems in Structural Analysis are governgddifferential equations. The solutions of theseiaipns
would provide an exact, closed-form solution to therticular problem being studied. However, suchlyital
solutions are only available for problems involvivery simple geometry, loading and boundary coodgi Hence, for
a more complex problem, the computational modetiag be employed to obtain an approximate solutikea( and
Isoldi, 2010).

This study is interested in determining the loadwaich the perforated plate looses stability (basklusing
numerical simulation. Besides, the present wor@nly concerned with the elastic buckling load. ®iere the plate
material is assumed to be linear elastic and thiealrstress in the plate at buckling, generatgdhe critical load, is
smaller than the material yield stress.

Then, with the ANSY® software, based on the FEM, the approach adopiedbiickling analysis was the
eigenvalue buckling (linear). This numerical prasedis used for calculating the theoretical buaklioad of a linear
elastic structure. Since it assumes the structdhgbigs linearly elastic behavior, the predictedckling loads are
overestimated (Madenci and Guven, 2006).

Therefore, if the component is expected to exhstriictural instability, the search for the loadttt@uses structural
bifurcation is referred to as a buckling load aselyBecause the buckling load is not known a pribe finite element
equilibrium equations for this type of analysisalwe the solution of homogeneous algebraic equatinose lowest
eigenvalue corresponds to the buckling load, amdasociated eigenvector represents the primarilibgcmode
(Madenci and Guven, 2006).

The strain formulation used in the analysis inckutteth the linear and nonlinear terms. Thus, thal stiffness
matrix, K, is obtained by summing the conventional stiffn@sdrix for small deformatiorkg, with another matrixKg,
which is the so-called geometrical stiffness mafixzemieniecki, 1985). The matrik; depends not only on the
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geometry but also on the initial internal forcesgsses) existing at the start of the loading s{é@} . Therefore the

total stiffness matrix of the plate with load Ie‘{d?%} can be written as:

[K]=[Kel+[Ke] ©)

When the load reaches the Ievel{dﬁ} = A{PO}, whereA is a scalar, the stiffness matrix can be defired a

[K]=[Ke]+AlKe] (4)
Now, the governing equilibrium equations for thatplbehavior can be written as:
[Ke]+AlKe [} = AR} (5)

Where{U} is the total displacement vector, that may theeehe determined from:

Ul =[[Ke]+ Ak AH{R)} (6)

At buckling, the plate exhibits a large increaseits displacements with no increase in the loadnfithe
mathematical definition of the matrix inverse as #djoint matrix divided by the determinant of dwefficients it is

possible to note that the displacemefiitly tend to infinity when:
det[Ke |+ A[Ks]| =0 @)

Equation (7) represents an eigenvalue problem, twhiben solved provides the lowest eigenvaldg, that
corresponds to the critical load Iev{eF{:r} =Al{ Po} at which buckling occurs. In addition, the asstamascaled

displacement vecto{U} defines the mode shape at buckling. In the fialement program ANSYS the eigenvalue
problem is solved by using the Lanczos numericahoe: (ANSYS, 2005).

3. RESULTS AND DISCUSSION

For this study, the plates are considered to besr@dold-formed steel. The material propertiesaasumed a& =
210 GPa ana’ = 0.30, and the material yielding stressis 250 MPa, for all plates.

In all numerical simulations the ANSYSSHELL93 reduced integration eight-node thin skeé#ment, shown in
Fig. 2, was employed. This element has six degoédeedom at each node: three translatiamsv( w) and three
rotations ©, 6y,6;).

|
Figure 2. ANSYS SHELL93 8-node element geometry

To validate the computational modeling, the caitimad of a non perforated plate was numericalglgated, and
the result was compared with the analytical soiugoven by Eq. (2). A steel plate with=2.00 mb =1.00 m and =
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0.01 m was discretized adopting a triangular eléméth side size of 0.05 nbf20), generating a mesh with 1814 finite
elements (Fig. 3). The analytical and numericalltssare, respectively: 759,20 kN/m and 755,30 kNghopwing a
difference of 0,51 %. Figure 3 also presents thekled shape of non perforated plate.

An important aspect is that the failure of platebjected to uniaxial compression may be due toability or
material failure. For thin plates (i.e. large valed b/t) made from a typical strain hardening materiahwiteld stress,
gy, instability occurs at an average stregsthat is much less than the yield stress, espgdfaie plate has no holes.
For the present case, the critical strggsis equal to 75,92 MPa, while the material yieléssa, is equal to 250 MPa.
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Figure 3. Plate without hole: (a) Finite elemensmgb) Buckled shape

Another characteristic that has great influenceh@nbuckling stressg,, are the boundary conditions of the plate.
For a real plate, the actual boundary conditiony beasomewhere between the all fixed and the mdpli supported
extremes. In general, for the same plate geomtteypboundary condition of simply supported edgesase critical
with respect to buckling than the condition of fixedges. Therefore, in the present study onlygtitieal case of plate
with simply supported edges is analyzed.

As previously said, the problem considered in thigk is the elastic buckling of a simply supportedgtangular
perforated plate (circular hole) subjected to uialbgnd compression along its longitudinal directi&irstly, the hole
size influence in the critical load was analyzefteAthat, an investigation about the hole positidtuence was made.

3.1. Hole size influence

All the plates analyzed in this study have thedi@lihg constant dimensionk:= 1.00 m and = 0.01 m. The aspect
ratio is variablea/b = 1, 2, 3, 4 and 5. The hole diameter also vades0.10, 0.20, 0.30, 0.40, 0.50 and 0.60 m. For
this initial numerical simulations the hole positialong dex axis is constantt,e = 0.5@, as shown in Fig. 4. In all
cases the loads were applied along the plate'srmside, i.e. the vertical edge.
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Figure 4. Perforated plate geometry and loading



Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

The results obtained for the critical buckling loafdperforated plates are presented in Fig. 5. drlieal load of a
plate with no hole, analytically evaluated by E), fvas used to normalize critical load and thetivilwas adopted to

normalize the hole diameter
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Figure 5. Normalized critical load x hole diameter

In Fig. 5 is possible to observe that the platédwigpect rati@/b = 1 has the worst behavior in the elastic buckling
analyses accomplished. In Fig. 6 the buckled shap#ss case are showed, indicating the formatibonly one half-
wave for all hole diameters used. Therefore, b#wegcenter of the plate the center of the half-wagethe hole in this
region increases, the stiffness of the plate deesaesulting in a decreasing critical load.

-.173607 -

-.100492

Figure 6. Buckling mode shape - plate wath = 1 andd/b of: (a) 0.10; (b) 0.20; (c) 0.30; (d) 0.4; () @.%f) 0.60

The perforated plate with aspect radib = 2 has the best behavior among the studied c@ibese is an increase in
the critical buckling load as the hole size alstréasesThis trend could be explained if one considerstihekled mode
shapes of the plate, which are presented in Fign Tact, the buckling resistance increases due tedastribution of the
membrane stresses towards the laterally supportiedesiges of the plate. When the rallb increases the plate buckled
shape changes from two half-waves to three half-wa\@s.explains the increasing of the buckling laathis case.

In an eigenvalue buckling analysis, only the caitibad can be precisely determined. The bucklinglenshape can also
be evaluated through the eingenvectors associatédeatch eigenvalue. But only the shape of the lngldurface can be
estimated. The real values of the displacementgtresdetermined in this kind analysis. As in tirété element method the
stress at a point is a function of the displacenagithis point, the stress distribution cannot beweated during an eigenvalue
buckling analysis.
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Figure 7. Buckling mode shape - plate wath = 2 andd/b of: (a) 0.10; (b) 0.20; (c) 0.30; (d) 0.4; (e) @.%f) 0.60

However, for a certain buckling mode shape, it mag$tablished the working hypothesis that the regiotine surface
that presents the larger displacements must beigebdrto the higher stresses, although thesessesesannot be determined.
This kind of behavior can be observed for the sguyaate with a circular hole, as it is shown in Fég.This working
hypothesis will be tested in the future by imposimg buckling mode shape as an initial imperfectiarthe plate and making
a nonlinear finite element analysis to determireertral stress field.

For the perforated plate with aspect ralb = 3 (Fig. 8), it can be observed that for the saskend/b = 0.1, 0.2
and 0.3, the hole coincides with the region oflitgher displacements (internal half-wave). Buttfue cases whed/b
= 0.4, 0.5 and 0.6, the displacements in the eatefimalf-waves are equal or higher than thoseefrtternal half-wave.
This can indicate a stress transference from deaigrart of the plate to its extremities whicHIdtave a large load
carrying capacity. This kind of behavior would pérthe increasing of the critical load of the plaas it is observed in
Fig. 5.

The plate with aspect rat@b = 4 (Fig. 9) withd/b = 0.1 has almost the same critical load that tlaeplvith no
hole. This hole is small and it is located on aiargf small displacements, and, assuming the wglaf the above
working hypothesis, on a region of small stres¥ésen the relatiom/b is increased to 0.2, the buckling mode shape
changes from four equal half-waves to five différkalf-waves. The larger displacements are in twral portion of
the plate, and they diminish in the direction of filate extremities. The change from four to fied¢ffwvaves bluckling
mode shape can explain the increasing of the afitamd. The reduction of the stiffness of the canportion of the
plate can justify the reduction in the value of tuekling load ford/b = 0.3. For the cases whefb = 0.4, 0.5 and 0.6,
the displacements in the central half-waves dirhinighile the displacements in the externals halegaincrease, so
the critical load may increase again.

The buckling mode shape for the plate with aspead &/b = 5 (Fig. 10) is formed by five half-waves. Foetbases
whend/b = 0.1, 0.2 and 0.3, the region of the higher dispinents coincides with the central portion ofglage. When
the relationd/b is increase from 0.4 to 0.6, the region of thehhrgdisplacements moves from the center to the
extremities of the plate. This behavior explainfrat the reduction of the critical load and igdr increasing value.

It is important to emphasize that the results olediin the present work were in agreement withelpyesented by
El-Sawy and Nasmy (2001).
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Figure 8. Buckling mode shape - plate wath = 3 andd/b of: (a) 0.10; (b) 0.20; (c) 0.30; (d) 0.4; () @.%f) 0.60
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Figure 9. Buckling mode shape - plate wath = 4 andd/b of: (a) 0.10; (b) 0.20; (c) 0.30; (d) 0.4; (e)@.%f) 0.60
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3.2. Hole location influence

Finally, an investigation about the hole locatiofiience was performed. This study was developedidering the
best result previously obtained, i.e., the casé ttie largest critical load (plate with aspectaatb = 2) was used for
analyzing the hole position effects in elastic Binck For this purpose, based on the Fig. 4, thegitodinal hole
position,X,qe, Was variedxpoe = 0.12%, 0.25@, 0.37% and 0.508. The numerical results are plotted in Fig. 11, rghe
the plate widthh was employed to normalize the hole location.

One can observe in Fig. 11 that for small diametieesinfluence of hole location in longitudinal @ition is not
significant for the critical buckling load. Howeveas the hole size increases its position becomesriant in the
elastic buckling load. Figure 11 indicates that tlase withd/b = 0.60 has the largest variation for the critilmald.
Therefore, the buckling modes of this case aregmitesl in Fig. 12.
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Figure 11. Normalized critical load x hole location
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Figure 12. Buckling mode shape - hole gize 0.60 m andk, Of: (2) 0.25@; (b) 0.37%; (c) 0.50@&
Again, the results generated in this work weregreament with those obtained by El-Sawy and Nag001).
4. CONCLUSION

The influence of plate aspect ratio, hole diameted hole location on the critical buckling load rettangular
perforated plates subjected to uniform uniaxial endhpression were numerically studied. For thetieldsuckling
analysis the general-purpose finite element proghBYS® was used and the eigenvalue buckling (linear) @gugr
was adopted.

A plate with no hole that has a critical load eedfd analytically was considered to validate thematational
model and as a reference value.

Several cases were studied and the redeltsonstrated that plates with centered circularshoda present a better or
worse behavior than a plate without hole, if compgrihe elastic buckling load. One of the factorat timterfere in this
behavior is the plate aspect ratio. The perforptate with aspect ratia/b = 1 had the worst behavior of all cases, reaching
minimum value of critical load about 30% smallearththe reference value. Moreover, the plate witteetspatioa/b = 2
presented the best behavior for all holes sizetyzaw, reaching a critical load 30% larger than teference value. The
others aspect ratio investigatedh(= 3, 4 and 5) had similar behaviors amongst themaseand the values of the critical load
were around the reference value.

Besides, the effect of the hole position in thesttabuckling was investigated. The longitudinaldtion was changed and
the results indicated that for small circular halles position in not an important factor for théical load. However, for
larger holes the location has a great influencthéncritical load. It was observed that for bigd®lthe position where the
maximum critical load is obtained is the centeth&f plate.

All the analyzed cases show that the presence dillairtioles (centered or eccentric) generates atrimlition of the
membrane stresses in the plates. This phenomensesa significant change in the structural stagtili the plates. For this
reason, the buckling of perforated panels has gngadrtance in structural design and additionaéagshes into this subject
are justified.
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