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Abstract. The design and implementation of full-order controllergenfrequires advanced hardware and high compu-
tational processing effort mainly for problems that inveddarge models, such as the vibration control of structuties
avoid this, it is recommended to use reduced order contll&pproaches using Linear Matrix Inequalities (LMI) are
widely employed in the design of reduced or fixed order ctiateo This approach presented good results of performance
and minimization of the H-infinity norm. However, the conagiohal cost to obtain the controller can be high for large
systems. The aim of this work is to present a direct miniieizahethod for designing reduced order H-infinity controdle
with a low computational cost. For this goal, it is formuldtan optimization problem, so that minimizing the H-infinity
norm guaranteeing the stability of the closed loop systesoliged. The solution of the optimization problem is obtdine
using the genetic algorithms, exploiting the advantagenisf point of view where there are numerical difficulties and a
complex search space. This formulation is verified in thégaesf a wind gust disturbance controller for the linearized
model of the F-8 aircraft often used with other methods oficed order H-infinity controller design. A comparison of the
proposed formulation and the combination of the LMI and thgrented Lagrangian method are presented in this work.
The proposed approach can be applied to the vibration copiablem of large structures. The optimization problem is
solved using MATLAB software and some numerical aspedtegfroblem are also discussed.
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1. INTRODUCTION

In the controller design problem for active vibrations, arseial criterion is the minimization of the H-infinity norm,
which consists of peak frequency response attenuatioreaddhtrolled system, while maintaining stability. Parkioly
in the case of problems of vibration control, the interesthaf reduction of the peak value is associated to reduce the
resonance peaks.

The H-infinity control is particularly interesting to in@se the ability of the system to reject disturbances, asasell
to increase its robustness.

One way to solve the problem of H-infinity control is througghformulation as a problem of linear matrix inequalities
(LMI) (Boyd et al, 1994; Schereet al, 1997). The usual H-infinity formulation leads to a full ord®ntroller (same
order of the plant). This can represent difficulties for piat controller implementation. To avoid this difficultgduced
order controllers can be designed, looking for reasonadatipmance and stability.

The design of reduced order H-infinity controllers chardazés a non-convex optimization problem. In this context,
some authors have succeeded to treat the non-convexity asiombination of the Augmented Lagrangian method and
linear matrix inequalities (LMI) (Apkariaet al., 2003; Sarracini, 2006). This approach can be an efficietthoadebut
can lead to high numerical cost for the solution.

In this work an optimization problem to design reduced oaertroller is presented. The synthesis of reduced order
controllers can be viewed as the minimization of the H-itfimiorm of the closed loop system subject to the stability
conditions. In this nonlinear optimization problem, eatdneent of the controller matrices is an optimization valéab
be found. To reduce the computational cost, the controllgrioes will be obtained in its state-space canonical fdtar.
the case of multiple-input and multiple output (MIMO), thentroller is adapted to maintain the canonical form in one of
its subsystems single-input and single-output (SISO).

The major difficulty of this problem is related to the searchgess (non-linear/non-convex optimization problem).
The genetic algorithms are search stochastic algorithresban natural selection where the central focus of research
is the robustness and the balance between efficiency andagfiiecessary. The genetic algorithm are theoretically and
empirically proven to provide robust search in complex sp@goldberg, 1989) and its potential for the reduced order
controller design is investigated in this work. In this wdrls used the MATLAB genetic algorithm toolbox. This allows
to work easily with an algorithm already structured with gedsity of options to define the search process.
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2. H-INFINITY CONTROLLER DESIGN

The H-infinity controller design represents an approachdha be treated as optimization problem in the frequency
domain. It is used when levels of performance and stabitjgitast external disturbances needs to be ensured.

The H-infinity controller design looks for the reduction akteffects of external inputs and minimizes the frequency
response peak of the system.

Methods to solve the H-infinity controller design problenvé&een developed in the last decades, for examples, the
methods based on linear matrix inequalities, which makéuerder H-infinity design as a convex optimization pratle
(Boydet al., 1994).

2.1 H-infinity norm

The H-infinity design consist in reducing the infinity normtbg transfer function of the output performance with
respect to exogenous inputs, which represents the minimizaf the frequency response peak of the closed loop system
In case of multivariable systems, the frequency resporesgralin refers to the singular values diagram, and in the case
of single-input single-output systems it refers to the Bdidgram (Skogestad and Postlethwaite, 1996; Zhou and Doyle
1998).

The H-infinity norm of the transfer function G(s) (SISO) ish@uet al,, 1996)

1G(5)lloc = supw|G(jw)| )
and the H-infinity norm of the transfer matr(s) (MIMO) is (Zhouet al., 1996)
[G(5)[loo = 5UPwOmaz(G(jw)) 2

whereo(G(jw)) represents the singular values of the transfer fundidn). o,,..(G(jw)) is defined as (Skogestad
and Postlethwaite, 1996)

OTmaz(G(jw)) = \/)‘maz (G*(jw)G(jw)) 3)

wherel, ... ( ) represents the largest eigenvalue &iddenotes transpose and conjugate of the m&irix

2.2 Output feedback H-infinity Controller

Consider the linear plant of ordergiven by

% = Ax+ Biw + Bau (4)
z=Cix+Dji1w+Dji2u (5)
y = C2x + D21w + Da2u (6)

with Do = 0 without loss of generality since the result can be extenddiokt general case (Sanchez and Sznaier, 1998).
w is the vector of exogenous inputsjs the vector of performance outpuis,is the vector of control inputsy is the
vector of output measures ards the state vector.

The transfer matrix of the plant given by Eq. (4), (5) and (6 w andz is defined as:

P,w(s) = Ci(sI — A)"'B; + Dy, 7)
Consider the linear output-feedback controléfs) given by

%c = Acxe + Bey 8
u = Ccxc + Dcy €)
Thus, the control signal is given by

u=K(s)y, K(s) = Ce(sI — Ac) 'Bc + De. (10)

From the state space model of the plant, Eq. (4), (5) and f@)itae controller, Eq. (8) and (9), the closed loop system
can be written as

).(cl = Achcl + BC1W7 (11)
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z = Cclxcl + Dclwa (12)
where:
. b'd A +B:;D.C; B3;C. B: +B;D.D
Xch[. },Ad:[ B2C2 2 Z ],Bd:[ 1 B]2)21 21 | 13)
Ca = [C1 + D12D.Cz D12C;], Do = [D11 + D12DcD2i] (14)

Thus, the transfer matrix of closed loop framandz is defined as:
Tow (5) = Ccl(SI - Acl)ichl +Da (15)

The H-infinity optimal control seeks to find the admissiblentrollersK(s) (that internally stabilizes the system)
s0 that|| T,w||« IS Mminimized (Zhou and Doyle, 1998), i.e. looks for to minz®j as much as possible, the frequency
response peak between exogenous input and performanaed.outp

The H-infinity sub-optimal control design (Zhou and Doyl®98) looks for to find the admissible controlK(s), if
it exists, so that, fory > 0,

||TZW||oo <7 (16)

In search of the optimal admissible controll€(s), - is minimized until the condition of Eq. (16) is not satisfiexl,
an unstable closed l0dB,., is found. In other words, the controll&(s) is optimum if solves the following optimization
problem (Zhou and Doyle, 1998):

min ~

17
s.a IT2w]|co < 7 (17)

with || T.w| oo Stable.

This optimization problem is often used to obtain the ful@rcontroller (controller with the same order of the plant)
This can be solved using the formulations based on Riccattémns or LMI approaches (Boyet al., 1994; Skogestad
and Postlethwaite, 1996).

3. DIRECT MINIMIZATION METHOD FOR REDUCED-ORDER H-INFINIT Y CONTROLLER

The reduced-order control design can be based on the gohitibe optimization problem presented in Eq. (17). The
linear controller shown in Eq. (8) and (9) can be of ordex n where each element of the controller matrices is an
optimization variable to be found.

To reduce the computational cost it is considered the faligwoordinate transformation:

Xe = Txy (18)
Using the transformation Eq. (18) in the Eq. (19) and (2@ ,abntroller can be rewritten as

% =T A Tx; + T 'B.y (19)
u=C.Tx¢ + Dcy (20)

Considering the first controller input signal (first columini®.) as reference for the transformation, as presented in
(Kailath, 1980; Ogata, 2003), it is obtained:

T=[Ba AcBa A2Bg .. AN IB4] (21)

whereB.; is the vector component of the input matly with respect to the first input.
This transformation presents the controller in its cotditle canonical form with respect to its first inputs as shown
in Eq. (22) and (23),

000 - 00 o 1 pia Bi2 o By
100 - 0 0 an 0 B2 Bao o B2y
010 -+ 00 a3 0 B3n Bz2 - B3
Ac = . . 3 Bc - . . . (22)
000 1 0 ar 0 Br—11 Br—12 -+ Br-1;
0 0 0 01 o | | 0 Bra Br2 - DBry
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€11 €12 €13 Cla Ci5 -+ Clk diy diog -0 dyj
C21 C22 C23 C24 C25 -+ C2k d2,1 d2,2 co dz,j
Cii1 G2 €3 Cia Cisz ot Cik di,l di,Q cot di,j

wherej andi are the number of inputs signal and output signal of the otiatrrespectively.

This controller state space model structure makes posgibliecing the number of unknowns variables in the reduced-
order controller design. The optimization problem can beritéen to ensure stability of both controlled system anédix
order controller as follows:

mlnak;Bk,j;Ci,k;di,j HTZWHoo
s.a max(rea(Ax)))< €1 (24)
max(realf(Aq)))< ea,

where)(-) represent the corresponding eigenvalueserahde, are negative values close to zero to ensure stability.
To improve the results one can include the following cornstita the optimization problem Eq. (24):

1Towlloo < Pawllo (25)

which means that the closed loop system should presentex bkthfinity norm compared to the non-controlled system.

The optimization problem given by Eq. (24) and (25) is a nudir optimization problem that presents a complex
search space. For this solution the genetic algorithmsrapoyed in this work exploiting its robustness in the search
process.

4. GENETIC ALGORITHM APPROACH

The genetic algorithms (GA) are a class of search methodudeforms of biological processes such as selection,
inheritance, mutation and crossover. The GA can be usedl¥ingmptimization problems presenting the following
advantages with respect to others conventional searctoae{Goldberg, 1989):

1. They work with a code to the parameter set, not with parara@alues.

2. They are not limited by restrictive assumptions such aseming to continuity, existence of derivaties, unimdgial
and other matters.

3. They search from a population of points and not of a singletp

4. They use probabilistic transition rules and not deteistimrules.

These features make GA a potentially useful approach indghera@ler design of this work.

GA work simulating the behavior of the nature of the indivatki They work with populations of individuals that
representing a possible solution to the optimization probl The individuals compete among themselves to produce the
next population where the natural selection depends on lomd i the adaptation of the individual to the problem.

A simple GA use three operators to create the next generfationthe current population (Goldberg, 1989):

1. Selection: Select the parents that contribute to theioreaf the population of the next generation.
2. Crossover: Cross two parents to form the children of thx generation.

3. Mutation: Apply random changes to the parents to form tikelien.

The power of GA is their robustness, and it can be used suUatlgsa a wide range of problem areas. GA are not
guaranteed to find the global optimum solution to a problarhttey can find an acceptably good solutions in a reasonable
time.

This work uses the MATLAB genetic algorithm toolbox (MATLAROOS). The command line ga is used allowing to
work easily on an algorithm already structured.

To set the features of the GA, it is defined the fitness funst{objective function) shown in the optimization problem
of Eq. (24). The constraints presented in Eq. (24) and (25akm0 implemented and included in the function ga.

The default setting options of the function ga where thevagleinformation characterizing the algorithm with 20
individuals in each generation are used in this work. Maximwmber of generations is 100. The tolerance in the
changes of the fitness function value before stoppiriis®. The selection process is made in the stochastic uniform
form (options@selectionstochun)jf The crossover function, creates a random binary vectbisatects the genes where
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the vector is a 1 from the first parent, and the genes wheredti®wis a 0 from the second parent, and combines the
genes to form the child (optior@crossoverscatter@dA crossover fraction is 0.8. The mutation function usedreate
the mutation children adds a random number taken from a @Geaudistribution (optiongmutationgaussign

With these considerations the optimization problem candbeesl and a reduced-order H-infinity controller can be
designed.

5. APPLICATION EXAMPLE

The following linearized model of the F-8 aircraft presehite(Lublin et al., 1996) and often used with other methods
of reduced order H-infinity controller design (Apkarieial., 2003; Calafioret al., 2000) is used as an example here. The
plant includes the aircraft model and weighting functiamshte treatment of wind disturbance rejection and unmodeled

dynamics.

0 0 1 0 0 0 0 0 0 0 0
15 —15 0 00057 1.5 0 0 0 0 0 0
—12 12 —0.6 —0.0344 —12 0 0 0 0 0 0
A_ | 0852 020 0 0014 029 0 0 0 B. _ 0 0 0
0 0 0 0 —0.73 2.8289 0 0 » 21 0.1146 0 0
0 0 0 0 0 —1.25 0 0 4 0 0
0 0 0 0 0 0 —1000 0O 0 102 0
0 0 0 0 0 0 0 —1000 | 0 0 1024 |
[ 0 0
0.16 0.8
—19 -3 1 0000O0TO0O 0 0 0
—0.0115 —0.0087 0100000 O 0 0 0
B = 0 0 " Cr=1 0000000 0/|'P2=]0 0 0
0 0 00 0O0O0GO0UO0 O 00 0
0 0
0 0
[0 0
Dy, = 0 0 Cz{l 0 000 0 —139.0206 0
001 0 |° 01 000 0 0 —139.0206
| 0 0.01
0 142.8571 0 00
Dz=| 0 142.8571]’])22:[0 0}

The H-infinity norm of the non-controlled system3g.2424 dB. Using genetic algorithms and the plant model for
the solution of the optimization problem Eq. (24) and (28guced order controllers of order 2 and 1 are designed as
presented in the following sections.

5.1 Controller of order 2 x 2

The controller obtained, using genetic algorithms, of ofdg 2 is

0 —0.6333 1 —2.557 ~0.3144 1.814
Ac= { 1 —2.14 ] B. = { 0 —0.3711 ] » Ce = [ 1703 3.679

||

The H-infinity norm of the controlled system2s9820 dB as shown in Fig. 1.

Implementing and using the LMI and Augmented Lagrangiarheo@{LMI - AL method) (Apkariaret al, 2003), the
controlled system presented a minimization of the H-infinibrm of17.2419 dB as shown in Fig. 1. The comparison of
both method is shown in the Tab. 1.

The parameters used for the LMI and AL method were: updaterfa¢the penalty parameteps= 1.7, initial matrix
of the penalty parametefs® = 10~21, wherel is the identity matrix, initial matrix of the Lagrange muliiers A® = 0
and convergence value of the non-linear constraiat10—°.

0.5834
0.1708

—0.2051
—0.9859

5.2 Controller of order 1 x 1

The controller obtained, using genetic algorithms, of oddg 1 is

0.3908 } D, = [ 0.4708

0.6139

—0.1175

—0.8949

Ac=-1054, By =[1 -4454 ], Cc= [ 2.206
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Figure 1. Frequency response of the controlled system (Bezpmethod and LMI and Augmented Lagrangian method)
and the non-controlled system: controller of order 2
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Figure 2. Frequency response of the controlled system (Bezpmethod and LMI and Augmented Lagrangian method)
and the non-controlled system: controller of ordler 1

The H-infinity norm of the controlled system4s9967 dB as shown in Fig. 2.

Using LMI and Augmented Lagrangian method, the controllgstean presented a minimization of the H-infinity
norm of23.7834 dB as shown in Fig. 2.

The results were obtained on a laptop with intel core 2 duegssor (1 and 2: P7450 - 213 GHz) with 3 GB of
memory. The operating system used was Ubuntu 10.04 (Linux).



Proceedings of COBEM 2011 21st International Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

Table 1. Main results of both methods: proposed method wgngtic algorithm and LMI - AL method

Method Order of the controllen Minimization of the H-infinity norm [dB] | Computational time [s]
Proposed 2 x 2 29.2604 178.2218
method (GA) 1x1 27.2457 186.6126
LMI - AL 2x2 17.2419 1591.6606
method 1x1 23.7834 793.1117

6. CONCLUSION

The main idea of this work is to present a simple and intuitivethod to the design of reduced order H-infinity
controllers. The method is based on the solution of a nagalioptimization problem to guarantee stability and good
performance of the system. The method exploited the adgastatfered by genetic algorithms in the solution of complex
optimization problems.

The method was employed in the linearized model of a F-8afirtw the wind disturbance control and compared with
the LMI and Augmented Lagrangian method. The controllesigieed presented a good minimization of the H-infinity
norm, close to the LMI and Augmented Lagrangian method, imcater processing time for this specific problem.

The proposed method and the LMI and Augmented Lagrangiahodetere implemented considering a particular
choice of parameters: selection function, crossover fancmutation function, tolerance and others for the prepos
method and penalty parameters, Lagrange multipliers,egahi convergence and others for the LMI and Augmented
Lagrangian method. The appropriate choice of this paraimiess lead to better results than those shown in this work.

The focus of this work was to present an alternative solutidhe problem of reduced order controllers. The compar-
ison of the proposed approach with the method presentedpkaianet al, 2003) had the main purpose of validating
the results. To show superiority between the methods, dustudies should be made on the appropriate choice of search
parameters.

Genetic algorithms have shown a good potential in the swiudf the reduced order controller design. In the area of
control design based on the solution of optimization protd¢éhe study and use of genetic algorithms can be an atactiv
alternative solution.

The solution approach has proved to be a good and simplerdaisggnative which can be exploited to some classical
formulations based on Riccati and LMI approaches.
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