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Abstract. An important issue in computational fluid dynamics is therappate approximation of the convection phe-
nomena. For this, the TVD schemes are alternatives to the/BNEDIO techniques due to the robustness, low cost and
simplicity of implementation. Within this scenario, thenadf this our work is to present a numerical study of some
recently introduced polynomial TVD upwinding schemes -elgmMOPUS and SDPUG with applications in fluid dy-
namics problems. By using these new upwind schemes, naihmesalts for nonconvex nonlinear problem, 1D Euler
equations, 2D advection of scalars and 2D MHD equations aesgnted. Comparison with the well recognized CFL-
dependent ARORA-ROE and ADBQUICKEST schemes and the ttoneeSUPERBEE and MC schemes are assessed.
The TOPUS and SDPUS! upwind schemes are developed in the context of normalizgéabies (NV) of Leonard and
satisfy TVD constraints of Harten.
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1. INTRODUCTION

To modelate convective terms in the field of computationadfilynamics (CFD) it can be used, among others,
different techniques namely: central schemes (CS), emthnon-oscillatory - ENO (and his related Weighted ENO-
WENO) and the total variation diminishing (TVD) upwind sches. The CS can be a simple choice to obtain good
numerical results but can develop spurious oscillationsth Wtie ENO/WENO scheme (see Hartenal. (1987) and
Liu et al. (1994)), it can be obtained excellent results in accuracyaproximation but the performance on 3D grid
is relatively poor. The TVD upwind schemes are good altéraatto modelate problems with discontinuous solutions
and shocks. The goal of this paper is to present a study ofacygwf two recently introduced TVD upwind schemes
namely: Third-Order Polynomial Upwind Scheme (TOPUS) and¥gree Upwind Polynomial Scheme 6f class
(SDPUSEM). In addition, a comparison of the results with other higsealution TVD upwind schemes is assessed.

2. THE UPWIND APPROACH
For the sake of simplicity, we consider the 1D model for adieecof a scalar
¢r +ap, =0, a=const>0, Q)

¢(z50):¢0(z>5 ‘TER,

with the analytical solution given by(z) = ¢(x — at). The numerical approximation for (1) using the consenreinite
difference methodology is

¢?+1 =7 — 9(¢?+1/2 - ¢?71/2)a (2)

where¢! is the numerical solution at mesh poinba, not); é= anddt are the space and time increments, respectively.
0 = adt/éx is the Courant-Friedrichs-Lewy (CFL) number. The quaesiti?, , , and¢; , , are the numerical flux
functions, which depend on three selected neighboring rpesfits, namelyD (Downstream)U (Upstream) and?
(Remote-upstream). These numerical fluxes are determuedding to the convective velocity; at the faces + 1/2
ori—1/2,as shown in Fig.1.

In this way, the variable is transformed into the NV of Leonard (1988) 5Y) = %. The advantage of this

formulation is that the interface valug depends omy only, sincesp = 1 andér = 0. In this context, it is possible
to derive a nonlinear monotonic NV scheme by imposing thefdhg conditions for0) < ¢, < 1: éf(o) =0(a
necessary condition)ﬂf(l) = 1 (a necessary conditior@,f(o.f)) = 0.75 (a necessary and sufficient condition to reach
second order of accuracy) asz}(().f)) = 0.75 (a necessary and sufficient condition to reach third ordexcotiracy).
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Leonard also recommends that for valuespf< 0 or ¢y > 1, the scheme must be extended using the FOU (First Order
Upwinding) scheme, which is defined Iiiy = ¢y. Itis possible to rewrite the scheme in NV in the flux limiterr
from the relationshig; = du + L4(rf)(1 — dur), wherey; = (ry) is the flux limiter function and is the reason of
two consecutive gradients (a sensor), given py= ﬁ. As explained in Hirsch (2007), the concept of flux limiter is
based on a control of non-monotone schemes keeping theegtadtvithin the proper bounds. Therefore it is controlled
the formation of under and overshoots on discontinuitiessmocks.

o Of
R U D D U R
® L @ L @ o
Yl | Vi
(a)Vf >0 (b)Vf <0

Figure 1. Position of computational nodBs U and R according to the sign df; speed of a convective variablg

The upwind schemes used in this works satisfy the TVD coim$tod Harten (1983) and the convection boundedness
criterion (CBC) of Gaskell and Lau (1988). The TVD concepswes that spurious oscillations (unphysical noises)
are removed from the numerical solution. Consider a sequehdiscrete approximations(t) = ¢;(t),., for a scalar
quantity. The total variationi[(V) at timet of this sequence is defined BW (¢(t)) = > |pir1(t) — ¢i(t)|. From this

i€Z

definition, the scheme is TVD if, for all data sgt, the valuesy” ! calculated by numerical method satisfy

TV (") <TV(¢"), Vn. (3)
The CBC establishes that a monotone scheme is limited ifdhemse expressed in NV satisfies

bu<ds(du) <1, i g e[0,1], (4)

o5 = bs(dv) = v, if pu ¢ [0,1], (5)

$5(0)=0 and $(1) = 1. ®)

3. THE UPWIND SCHEMES

It is briefly described the high-resolution upwind schemssdun this work in terms of flux limiter.

ADBQUICKEST , by Ferreiraet al. (2009):

2+6% — 1—6?
P(ry) = max 0, min |27y, +6" 36+ (1 -6 )rf,2 ; @)
3 — 3|0
ARORA-ROE, by Arora and Roe (1997):
9 _
P(ry) = max {0, min2r;, a(ry — 1) +1],2}, a= Te; (8)

MC, by van Leer (1977):
P(ry) = max {0, min(2r¢,0.5(1 +7¢),2)}; 9)
SDPUSC!, by Limaet al. (2010):

B 0.5(]r¢] +Tf)[(—8+2a)r§’c + (40—40()7“? + 2ar ] o
7/)(7’f) = max {Oa (1+ |Tf|)5 ;o oa=12 (10)
SUPERBEE, by Roe (1986):
P(ry) = max {0, [min(ry, 2), min(2rs, )]} ; (11)
TOPUS, by Queiroz and Ferreira (2010):
B 0.5(|r¢ +7rp)[(—0.5a + 1)rF + (a + 4)rp + (=0.5a + 3)] B
P(ry) = max {0, TEND , a=2. (12)
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4. ERROR AND CONVERGENCE ORDER
With the aim of analyzing the errors ity norm, the following definition is used
N
| Esally = 1@ — ¢l = D |2} — 7|6z, (13)
§=0

where¢ and® are the numerical and reference and/or analytical solsitiespectively.NV is the total number of mesh
points.
In the 2D case, thé; norm error is defined by

N
| Esally = > |07 — ¢35 |02, (14)
i,J

The observed order of convergencis calculated by

_10g(||Esa|l1 /|| Esas2|l1)
b log 2 '

(15)

5. NUMERICAL RESULTS

This section shows the numerical results for some 1D and 22 tplic conservation laws of fluid dynamics. Firstly,
it is computed the solutions for 1D nonlinear nonconvexacBluckley-Leverett and the Woodward-Colella blast waves
problems. Then, it is solved a 2D scalar advection problednthe 2D Orszag-Tang MHD turbulence problem. For 1D
problems and 2D advection of scalars, it is uged 0.5. For the MHD problem it is considergd= 0.75. The numerical
solutions for Buckley-Leverett and 2D linear advectiontpjeons are computed using an in-house computer program with
a third order Runge-Kutta for marching time (Gottlieb and-@lang-Shu, 1998). For 1D Euler and 2D MHD equations
the numerical solutions are computed using@h&WPACK code of Leveque (1999).

A 1D hyperbolic conservation law (HLC) is defined by

¢t + F($)z =0, (16)

where jacobiarF’(¢) has real eigenvalues and a set of linearly independent\egenrs. ¢ is the conservated variable
andF(¢) is the flux of conservated variables.
Inthe 2D case, a HLC is

¢t + F(¢)a + G(¢)y =0, (17)

where the jacobiang”(¢) andG’(¢) have the same properties as in the 1D casép), andG(¢), are the fluxes of
conservated variables anandy respectively

5.1 The Buckley-Leverett equation

Itis presented the numerical solution of the nonlinear womex Buckley-Leverett equation where

U2

(18)
This equation is used to model a two phase fluid flow in a poroedian(see LeVeque (1992)). The initial condition is
defined by

U{L 05 <z <0, 19)
0, otherwise.
The numerical solutions are computed with= 160 and at final time = 0.4. The reference solution is computed by
using1600 computational cells with the MC upwind scheme.

It can be concluded from Fig.2 that all schemes present, memg, good results, with TOPUS scheme presenting
the best results near shocks. The CFL-dependent ADBQUIOKd S ARORA-ROE schemes show a small dissipative
character near the shocks. The SUPERBEE scheme presehesttepproximation on smooth regions.
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Figure 2. The Buckley-Leverett equatiaN. = 160, ¢ = 0.5 att = 0.4

5.2 The 1D Euler equations

The Woodward-Colella interacting blast waves problem lier Euler equations (see Woodward and Colella (1984);
Kammet al. (2008)) has been designed, among other things, for cheth@gapabilities of the upwind schemes. The
Euler equations are given by using

¢ = (p,pu,pE)"  and  F(¢) = (pu, pu” + p, (pE + p)u)”, (20)

wherep is the mass density, is the velocityp is the pressure = e + u?/2 ande is the internal energy. The ideal gas

law isp = (v — 1)pe, wherey = 7/5 is the ratio of specific heats. Reflecting boundary conditire implemented. The
initial condition is defined by

(1,0,1000)T, 0 <z <0.1,
(p,u,p)T =< (1,0,0.00)T, 0.1 <z<0.9, (21)
(1,0,100)7, 09<2z < 1.

The reference solution, using the Godunov method with aection term associated with the MC flux limiter, is
calculated with a mesh size &f = 6400 computational cells. Table 1 depicts the errors and theraedeorder for the
upwind schemes, where it can be seen that in this nonlineatgmn all schemes provided practically the same order of
convergence.

Table 1.1, errors and convergence rates for the Woodward-Colellagotieg blast waves problem

TOPUS SDPUSC! ARORA-ROE ADBQUICKEST SUPERBEE MC
N L1 P Ly p Ly P L1 P Ly p Ly P
200 3.36FE — 01 —— 3.04FE — 01 279K — 01 —— 286FEF—-01 —— 191F—-01 —— 286F—01 ——

400 1.78E —01 0.92 1.54FE —01 0.98 1.37E —01 1.03 1.40E —01 1.03 6.41FE —02 1.58 1.40FE — 01 1.03
800 8.26F£ —02 1.11 6.80E —02 1.18 6.00E —02 1.19 6.13E —02 1.19 1.66E —02 1.95 6.13E — 02 1.19
1600 3.18E — 02 1.38 2.41E —02 1.50 1.99F —02 1.59 2.04E —02 1.59 1.14E —02 1.53 2.04E — 02 1.59

Figure 3 details the numerical results for density as famctif position. The peaks are developecdat 0.65 (the
first one) andr ~ 0.745 (the second one). From this figure, it is concluded that SUBEHRscheme present the best
approximation on the first peak. And the other schemes caartied on this peak as: ARORA-ROE, ADBQUICKEST,
MC and SDPUSZL. The same conclusion is reached for the second peak. On tit@ctaliscontinuity at: ~ 0.59 the
SUPERBEE scheme shown to be the best, while the other scleemdssipative.
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Figure 3. The Woodward-Colella interacting blast wavedfmm. The density at= 0.038 for the N = 400, 0 = 0.5

5.3 The 2D linear advection equation

The 2D advection of scalars is defined using
¢ = u, F(¢) = au and G(¢) = bu, (22)
wherea = b = 1. The initial conditions is
u(z,y,0) = sin 27z sin 27y,  (z,y) € (0,1) x (0,1), (23)
with periodic boundary conditions. The exact solution igegi by
u(z,y,t) = sin 2w (x — t) sin 27 (y — t). (24)
In this problem, a final time¢ = 2.0 and the meshe¥ = 200, 400, 800, 1600 are used.

Table 2.1, errors and convergence rates for 2D linear advection emuati

TOPUS SbpPuUsct ARORA-ROE ADBQUICKEST SUPERBEE MC
N x N 17 D 17 P L, P L, P Ly P Ly P
20x 20 2.88FE —02 —— 1.73E—-02 —— 239E—02 —— 245E—02 —— 282E—02 —— 2.19E—02 ——

40 x 40 T7.63FE —03 1.92 549E —04 4.98 3.74F —03 2.67 6.74E —-03 1.86 1.61F —04 1.86 2.85FE —04 6.27
80 x 80 1.32E —03 2.53 5.71E—-05 3.26 4.76E —04 297 1.68E —03 2.00 1.97E —05 2.00 3.28E —05 3.12
160 x 160 2.37E — 04 2.48 7.94E —06 2.85 5.98E —05 2.99 4.13E —04 2.03 2.44FE —06 2.03 3.99E — 06 3.04
320 x 320 4.18FK — 05 2.50 1.43F —06 2.47 7.65FE —06 2.97 1.01F—04 2.03 3.03E—07 2.03 4.93F —07 3.01

Table 2 shows, for this linear problem, the errors and theesi orders of convergence for upwind schemes. As
it can be observed from this table, all schemes overcameotineaf order, except the MC scheme which shown to be
of third order of accuracy. Figure 4 shows a comparison ofdiselts obtained with the upwind schemes. From Fig.4,
one can clearly see that both TOPUS and ARORA-ROE schemeglprgood solutions, while the ADBQUICKEST
scheme presented a smeared solution (this behaviour leeglglbeen observed in test time for 1D advection of scalar
(see Candezarat al. (2010)). The other schemes give similar results. Figuregbotiethe space evolution of all upwind
schemes for the 2D linear advection equation.

5.4 The 2D Magnetohydrodynamics equations-MHD

The ideal MHD equations are a nonlinear system of hypertmaitservation laws that characterize the flow of a
conducting fluid in a presence of magnetic field. They are ddftyy
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Figure 4. The 2D linear advection equation computed With 0.5, N x N = 320 x 320 at timet = 2.0: a) TOPUS,
SDPUSE! and ARORA-ROE; b) ADBQUICKEST, SUPERBEE and MC

¢ = [p, pu, pv, pw, By, By, B3, E]T, (25)
F(¢) = |pu,pu®+ P* — B?, puv — By By, puw — B} B3,
0,uBy — vB1,uB3 — wBy,u(E 4+ P*) — By(uB; + vBy + wBs)]” (26)
and
G(¢) = [pv, pvu — BoBy, pv* + P* — B2, pvw — By B3, vB; — uBs,
0,083 — wBa,v(E + P*) — By(uB; +vBs + wB3)]”, (27)

wherep is the densityn = (u, v, w) is the fluid velocity,B = (B1, B2, Bs) is the magnetic fieldE = 2p||u[|* +
11B|2 + (731) is the total energyp is the thermal pressuré}* = p + 1||BJ|? and $||B||? is the magnetic pressure,
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Figure 5. Space evolution for 2D linear advection equation



~v = 5/3 is the ratio of the specific heats. The system has eight unkagw= (p, pu, E, B) and eight equations. In
addition, for physical reasons the magnetic field must fyatiee free divergence conditioy] - B = 0. From now on,

the results for the Orszag-Tang turbulence problem (OrapaigTang, 1979) are presented. This problem describes the
evolution of a vortex system involving the interaction beém several shock’s waves traveling at various speed regime
From numerical point of view, this test is very interestifitne computational domain (8, 27| x [0, 2x]. The grid sizes
are:16 x 16,32 x 32,64 x 64,128 x 128 and256 x 256. The initial conditions are given byi = 42,4 = —siny,v =
sinz,w = 0, B; = —siny, By = sin2x, B3 = 0, p = ~. Periodic boundary conditions are implemented.

Table 3.L; errors and convergence rates for density of the Orszag4{tabglence problem

TOPUS SDPUSEC! ARORA-ROE ADBQUICKEST SUPERBEE MC
N x N L1 p L, P L, P L, p Ly p L1 P
16 x 16 1.06KE+00 —— 107E+00 —— 1.07E400 —— 1.08+00 —— 1.09£400 —— 1.0TE+00 ——

32x32 2.72E-01 197 2.74E —01 1.97 4.46F —01 1.27 2.77E—-01 196 283FE —01 194 2.76E —01 1.96
64 x 64 6.60E —02 2.04 6.63E—02 2.04 6.70E —02 2.74 6.69E —02 2.05 6.79E —02 2.06 6.68E — 02 2.04
128 x 128 1.43E —02 2.20 1.43F —02 221 143F —02 222 1.44F —02 222 145FE —02 223 1.44F —02 2.22
256 x 2566 2.39F — 03 2.57 2.39F —03 2.58 2.39F —03 2.59 2.39F —03 2.59 2.39FE —03 2.60 2.39F — 03 2.59

Table 3 displays the errors and the observed orders of cgenee at final timé = 0.5. In this nonlinear complex
problem, all schemes overestimated the formal order of timeemical method.

Figure 6 shows the pressure contours obtained with TOPUSBIRUSE! schemes for the Orszag-Tang turbulence
problem, at final time = 2, with a mesh256 x 256. These results are in good agreement with those given byéBalb
et al. (2004). In particular, it can be observed that TOPUS and S®PU schemes capture well the complex evolution
of the system and the formation of all shocks involved in grigblem.
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Figure 6. The Orszag-Tang MHD turbulence problem. The prressn256 x 256 grids pointsf = 0.75 at timet = 2,
with 30 contour lines

6. CONCLUSION

In this work, it was presented a study of the accuracy for teaaently introduced TVD upwind schemes, namely
TOPUS and SDPUS$*. Some fluid dynamics problems, such as 1D nonconvex nomlBgekley-Leverett, 1D Euler
equations, 2D linear advection equation and 2D MHD equatiarere solved. By using these problems, comparisons
were assessed with respect to the errors and observed ofders/ergence. In general, it was observed that both TOPUS
and SDPUS=! upwind schemes overestimated the formal order of accuwetly,exception of the Woodward-Colella
problem where it was observed that orders were underegtimén the case of advection of scalars in 2D, the TOPUS
scheme presented a solution very near to the exact one. @rfzag-Tang problem the TOPUS and SDPUSscheme
captured well the shock interactions. For the future, tit@ns are planning to use the TOPUS and SDRUSscheme
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for solving 3D incompressible free surface flows in a turbtulegime.
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