Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

TOPOLOGY OPTIMIZATION AND OPTIMAL CONTROL IN
STRUCTURAL DESIGN

Alexandre Molter, alexandre.molter@yahoo.com.br
Valdecir Bottega, valdecir.bottega@ufpel.edu.br
Universidade Federal de Pelotas, Dep. MathematidsStatistics, Campus Universitario, s/n°, 354, 96800, Pelotas, RS, Brazil.

Jun S. O. Fonseca, jun@ufrgs.br

Otavio A. Alves da Silveira, otavio.silveira@ufrgsr

Universidade Federal do Rio Grande do Sul, Dep. kieical Engineering, R. Sarmento Leite, 425, 900B0D-Porto Alegre, RS —
Brazil.

Abstract. This work present a structural design methodology considering control effects, the change of the topology by
a control force action, and design modal control for suitable fixed actuator locations. The actuators are composed by
piezoelectric material. The topology optimization in this work uses homogenization design method, based on the
concept of optimizing the material distribution, through a density distribution, while the control force is obtained by
the optimal control design for transient response and performed in the modal space. A Continuum finite elements
modeling is applied to simulate the dynamic characteristics of the structure. The cost functional is the strain energy of
the structure and the control energy. Results of numerical simulations for a cantilever beam model are presented and
discussed.
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1. INTRODUCTION

Structural vibration control is a particulamgportant consideration in the design of dynangstems. The main idea
of the structural optimization is to obtain an oml material layout of a load-bearing structureudlly, continuum
topology optimization problems are formulated taoimiize the structural material volume or to optienthe structural
performance. A typical example is to raise thet fitmdamental frequency of a structure while obgya volume
constraint (Zhan, Xiaoming and Rui, 2009). Meanwhiktructural dynamics control, considering piezotkic
actuators, is used to minimize suppress vibratifiaces. The design of these structures takes immownt the
interaction of the applied forces, the elastic nsoadled the actuator placement.

There are always fundamental interest in desigith efficient structural control system fromtlbtructural and
control engineers. However, these groups have bewking independently. Traditionally, the structudesigner
develops his design based on strength and stiffieeggrements, and the control designer createsdahtol algorithm
to reduce the dynamic response of a structure (@uKakuchi, 1996). In this work we are designing ttructure and
controls simultaneously, meaning that the costtiondncludes not only the strain energy, but dlecontrol energy.

The reason why topology optimization is beawgna very important research field is the necessitefficient
methodologies to design structures, thus savingmahtand time. The main objective of the topolagptimization
problem is to find a material distribution that mniizes a given objective functional, subjected teefof constraints,
achieved by a consistent parameterization of th&enmah properties in each part of the design domaimatural
guestion is whether there exists or not materia given point, which leads to a discrete problgns. well-known that
this integer parameterization leads to numericfiicdities, associated with the integer problemeengence (Cardoso
and Fonseca, 2003; Bendsge and Kikuchi, 1988; Bendsd Sigmund, 1999). Minimizing the vibratioreefs of the
dynamic response is an important goal for the siratvibration control, and the effectivity of tleentrol depends on
the weighting matrices.

The objective of this paper is to presentracstiral design methodology considering the corgftécts, the change
of the topology by a control force action, and dasinodal control for suitable fixed actuator looas. The structural
optimization design is completed through a dendégign method, while the control force is obtaihgdhe optimal
control design for transient response and perforimélde modal space.

The efficient structural control design needsareful selection of actuator positions (Ou arilukhi, 1996).
However, in this work the actuators locations anesen arbitrarily prior to the structural design.fact, it is well
known that a good location for an actuator in atit@rer structure is close the fixed size of theusture, since it acts
upon the first and most significant mode (Sun gt24l04, Donoso, A. and Sigmund, O., 2009; Moleret al, 2010).
The lower fundamental modes are responsible fontbst of the tip displacement of the beam; thegeftire first two
eigenfunctions are computed and considered inatbik. The dynamics and control design were incluitea topology
optimization code. Simulations were conducted 8ess the effectiveness and control model efficiency
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2. FORMULATION OF STRUCTURAL TOPOLOGY OPTIMIZATIO N CONSIDE-RING CONTROL
ACTION

The homogenization design method (Bendsge and SigmRA003) is choosing the tool for the topology
optimization considering a control action. This huet is based on the concept of optimizing the nadtdrstribution,
through a density distribution. A finite elementshas defined to perform the structural modal asialyBathe, 1996).
As a simplification, we assume that the densityoisstant in each finite element. An optimality erig (OC) is derived
from the necessary minimization conditions, andsitsolved to update the density distribution. A iem of
simplifications are introduced to the implementafias a regular mesh.

We now consider that the objective functionthe sum of the strain energy and the control gneftpen, the
topologic optimization problem in steady state tinasform

minJ, J(x) =f"Rf +UQU

subject to V(X) =V
J V0 = Vhin (1)
KU =Hf +F

0<x, sx<1

whereU,,; is the displacement vectdt,n, is a location matrix for the control foram,is the number of action control
forces andF ., is the applied external force vectdy,, is an applied control force in terms of electiad. The
magnitudes of the matric€3.,, andR, are assigned according to the relative importaridhe state variables and
the control force in the minimization proceduke,, is the finite element global stiffness matriis the vector of
design variablesy, is a vector of minimum relative densitid4x) andV, is the material volume and design domain
volume, respectively and,,, is the prescribed volume function. Consideringdtseretization,

u'Qu :ZN:(xe)pu:qeue, 2)

whereN is the number of elementg is the penalization exponent, andg. are the element displacement vector and
weighting matrix, respectively.

The optimization problem is solved using thpti@ality criterion (OC), and this criterion is dexd from the
Karush-Kuhn-Tucker conditions (Bendsge and KikutBB8). The Lagrangian function of the minimizatimoblem is

LX) = I() + A,V (X) =V, V,) + 4] (KU = (Hf +F )+ 3" A, (X0 = %) + D A (X =X, - 3)
where the scal /10 and the vectod, are the global Lagrangian multipliers, and thears A,, and A, are Lagrangian
multipliers for lower and upper side constraints.

To locate a stationary point, it is necesshay dL / 0x, =0, then

- 4
OL_03 GV . 0KU-BEHE) (4)
ox, 0x 0 ox,

Here, we assume that constrains of the designblasare not activeA,, =A,, =0 and that the load and forces are
O(Hf +F) _ 0.
ox

The feedback requires a full knowledge ofestaBy using the displacement closed-loop feedlsackrol we can
assume

design independer

f=-R™M'U, (5)
then the equilibrium constraint from Eq. (1) beceme

KU =F, (6)



Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil
where
- = T
K,=K +HR H ". 7)

We can note that thK . is the modified matrix under control effect ane thodification appears where the force

control is applied, which affects also the eigenealand displacement of the structure. The prolskembe solved as
the conventional static finite element method amdard formr K U =F .

The influence of the weighting matrX is an important aspect to consider. To have digmit effect on the
topology of the structure, the matiik* need an equivalent magnitude compatible with thitness matrix. Since the

stiffness is modified on each iteration, thris chosen ¢R = Gdiag(Pa / /,1), where U are the eigenvalues (the
smallest to the largest is a weighting constant is am is computed as the energetic equivalent genecafiree
(Yang et al., 2005; Kumar and Narayanan, 2008; &tadt al, 2010), that is, as a moment.

2.1. Sensitivity Analysis

Sensitivities are defined as the derivativeshe objective function and the constraints wiélspect to the design
variables, and is often the major computationat obshe optimization. In this model, the objectifumction sensitivity
requires differentiating displacements (which iraplstiffness differentiation) and eigenvalues. 8ulisg Eq. (5) inJ
from Eq. (1), this yield

J=UTU+U'QU=U" (r+Q)u, (8)

whereI' = HRTRRHT . The derivatives of can be computing by

0J _ou ouU

a_xe=a_><e(r+Q)U+U(r+Q)0_><e' )

It is possible obtain a simplification for therivatives ofl, Eq (9), adjusting the matriQ by Q=K. Then, the
objective function change, substituting Eq. (7piElg. (6) and then Eq. (6) into Eqg. (1), this yield

J = f'Rf +UT (Hf +F). (10)
Using Eq. (5) into Eg. (10), we obtain the simplifiobjective function

J=F'U. (11)
Taking the derivative of the objective function, @ch element, one can obtain

:_;e =F" g—z , (12)
and substituting

13

and

oK oK 1 0

aT:zaTeJrGPaHaTl:HT (14)

into (12), we have
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a_Jz_[UTa_KW 1
0X,

THTRLATLTRN (15)
0X, GP*

0X,

The sensitivity of the each eigenva [ is computed by (Haftket al., 1990)

(K- M )p=0 (16)
and

ou _ (oK oM o[ ok om

1 = - —— = € —y—2= , 17

0X, ¢[0xe ,uaxe]qo @[axe 'uaxe e (17

where ¢ is the mass-normalized eigenvector &hds the mass matrix, on each elemg, t, ke andme.

With some expanding of the terms, also singaiifon of the equations and heuristics schemetlier design
variables (Sigmund, 2001), we can obtain the refor each iteration:

max( X, X =3) it XB] < max(x,, X0 -5)

XD = § xGopa if max (X, X =&)< X8 < min(1x +4) ,
. . . 18
mln(l,xé") +5) if mln(l,xé"’ +5) <xMB?, (18)
where d and @ are respectively, the prescribed move limit aregtescribed numerical
damping coefficient. The ter B, is defined from the optimality condition as
p-1
g = Px)" uky, (19)
¢ 20N,

where p° is the mass density of the materhlis the elemental volume. The mesh-independet fit provided from
Sigmund (2001).

3. CONTROL EFFECTS ON STRUCURAL TOPOLOGY

We can imagine priori that control forces acting in different locatioos the structure should influence the
optimized design. To exemplify this fact, we comsid design domain as a cantilever beam showgirlFi

T

4

1

— 10 —

Figure 1. Design domain cantilever beam.

For a structural only design of this domaie, wge the compliance as the objective function,cdntdin the topology,
for the cantilever beam, shown in Fig. 2a. Thenmyeo introduce a control forces on this desigyolat. It is possible
that on the desired location for the actuator tier® material. If the optimization is performedheut considering the
control forces, then we need either to change theator location or to redesign the structure. il Ba we indicated
with points (small circles) the actuator locatiodalesigned the structure again, this time conisigehe control force.

The value of the parameters ap=3,a = 0.5,0 = 0.2, P* =diag (-0.002, -0.0). and G is adjusted with

similar magnitude of the stiffness inverse vallig® new topology for this problem is shown in 2, corresponding
to the design domain, Fig. 1. The mesh domainerstmulation uses 1440 finite elements.
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Figure 2. a-Topology optimization without control¢e action. b-Topology optimization with controtée action.

In this simulations it can be noted that theicture design change completely with the conaction effects.
Additionally some attention for the actuator looatis required to assure the controllability of fliystem and the value
of G and the actuator location has considerable infleeri control efficiency and the final topology.

4. OPTIMAL CONTROL DESIGN IN MODAL SPACE

After computing the optimal structure we sédiar the vibration suppression for a transienpoese of the system.
It is possible to design the control for the displment of a particular point of the structure.His twork we derive the
control in independent modal space, computing #teabior of the system on the nodes where the dofutrces are
applied .

The formulation of independent modal spacetrobnderived by the classical optimal theory (Ngid2003),
associated with the distributed-parameter systembea written briefly as follows. The modal formudat for the
system is

ij+o0’n=¢'GP*V,, (20)

where & are the frequencies aMj the voltage applied to actuator.
Let assume that= (m + number of modes). Then, G, is aweighting matrix and f’f;l is the energetic equivalent

generalized force matrix. The dynamic system defibg Eq. (20) can be parameterized in first ordgrations and
written in the state-coefficient form

y=Ay+BV,_ z=Cy, (21)

wherey,,; is a state, time dependent varialy2I «1 is the vector of the first order time derivatesiud states in modal

space V, OSSO0 is the control vectorS is the control constraint Set,, is sensor output an@yy is the sensor

output matrix in modal spac&his system represents the constrains from théinear regulator problem, together with
y(to) =Yo, y(oo) =0, respectively the initial and final conditions.
The coefficient matrices, in modal space, aithconsidering damping, are given by

A:{Om lel:| B:{ O|><|:| y:{ﬂ} C:{Om Clx|:| (22)
—of, 0, ] ¢'GP* |’ 0’ Ox O

A state feedback rather than output feedba@dopted to enhance the control performance. quaaratic cost
function for the regulator problem is given by

3. :%I[yTéy +VIRV, ot (23)

where (_Q is semi-positive-definiteveighting matrix on the outputand R positive definite weighting matrix on the
control inputs. Assuming full state feedback, tbatool law is given by
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V. =-R™B"Pz=-Kz, (24)

==
whereP satisfies thalgebraicRiccati equation
A'P+PA-PBR'B'P+Q=0. (25)

The computational cost is high if all modes eonsidered. But it can be dramatically reducezhly a few modes
are dominant and their control is sufficient foe ththole structure.
The closed loop dynamics of the system is glwen

y=(A-BKCy, (26)

The stability of the feedback mat A = (A- BKC ) is an important condition for the existence of feedback

control. It can be show that for our problem thabdity for A is assured.

5. RESULTS

The physical system considered in the simufatis composed by cantilevered steel beam showigir?a and the
piezoelectric actuator bonded on the upper surfaicthe beginning of the beam. The sensor is censita piezofilm
bonded on the bottom surface, also at the beginfitige beam. The resulting topology for this pesblis show in Fig.
3a and Fig. 3b, where the locations of the horiocntrol forces are indicate by points (smaltleis) and the sensor
by a small rectangle. This location for the actuatas chosen because it is a known fact that tlsé filace for one
actuator, bonded on a cantilever beam, is as dgspossible to the fixed size of the structure,chbears the
maximum stress induced by the first and most sicanit mode.

Some simplifications are introduced to thebpem and its response analysis. We assume thawvtheontrol points
can have different forces. This means that theeet@o external actuators. Only one actuator wowddegate equal
magnitude opposing forces and need to be explicitdpuded in the model.

=050

(a) (b)

Figure 3. a-Topology optimization without controfée action. b-Topology optimization with controkée action.

It can be note in Fig. 3b that the topologg Imot changed as much as in Fig. 2b. This carntiileuéed to location
and magnitude of the force control have been lassive in the topology than in the previous cabes,with enhanced
control efficiency.

The convergence of the objective functioplated in Fig. 4.
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Figure 4. Objective function convergence of thetibarer beam case a- without control; b- with cohforce at the end
of the beam ; c- with control forces at the begigndof the beam.

We can observe in Fig. 4 that the convergéndaster in the initial 30 iterations, after thésea smaller change of
the objective function value at each iteration.

The topology shown in Figure 2a subject tmgrant forces produces initial deformation and stiva the natural
vibrations. The three free vibration modes of theded, which finite element discretization are shawrrig. 5, whose
frequencies are 0.Hgz, 0.15Hz and 0.24#z, respectively.

model mode2 de®
Figure 5. Deflections of the modes in modal spac

In Fig. 5, it can be note that the first magleot a vertical and the second and third modesartical modes.
The results of the optimal control simulationMatlab are shown in Fig. 6. The weighting magsicand control
matrices areG = diag(10°,10 ,16 ,16 , Q =diag(10,10,10,10. Here are considered the two first modes of

the optimized structure. The position 1 is on #fepoint (small circle) and position 2 on the tigkhown in Fig. 3. The
fourth-order Runge-Kutta method was used to integitze equations for a thirty seconds simulation.

displacement mode 1, position 1 displacement mode 2, position 1
0.1 : 0.1 ‘ ;
0.05 1 0.05 1
s 0 S 0
-0.05 . -0.05 N
-0.1 : -0.1 :
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t t
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0 10 20 30 0 10 20 30

Figure 6. Deflections of first and second modesuit independent modal control (blue and red) aitial wdependent
modal control (black).

It is possible observe that the modgpldisement go quickly to zero, even without natd@nping. The choice

of the best values for the state and control waighmatricesQ and R is important. A good choice can improve the
efficiency of the controllers. In this paper wevbdested some weighting matrices and concludegd fitraour control
design, the good results are obtained around theevahooses above. Smaller or greater valuestaffee control
efficiency.
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