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Abstract. It is quite common in flexible structures analysis the needs of attenuating vibration to desired levels or even
to eliminate them. To achieve this goal, there are three control techniques: the passive, the active and the semi-passive
control. Active control uses external actuators, controlled by a loop in real time to eliminate or mitigate the forces
responsible for these vibrations. However for this technique to provide satisfactory results, there are several factors to
take into consideration, among them the type of actuator and sensor being used and the type of controller. There are
many studies related to this issue and one of themis the use of a piezoelectric material, which acts both as sensors and
actuators. These materials have some advantages like the little added weight to the structure, associated to good
performance. Most flexible structures are distributed parameter systems and therefore, problems with infinite
dimensions are not practical for control design, so some mathematical techniques are used to bring such systems to
finite dimensions, and one of the most used is the Finite Element Method. This paper proposes to model an Euler-
Bernoulli cantilever beam and incorporate the piezoelectric sensors and actuators dynamics, using the Finite Element
Method. It will be developed a control design, both in time and in frequency domains in order to compare the results
obtained by both approaches.
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1. INTRODUCTION

Currently, due to the demands of quality and pentorce on the market, it becomes necessary thefeféctent
equipments and structures as well low-cost manuifengt, maintenance and operation. Accordingly, masiresearches
are focused on developing techniques for activeatitn control. This technique use external actigatm real time
control loop, which act to eliminate or to redube forces responsible for the undesirable vibratidine active control
main idea is presented in Figure 1

controller

actuator

| structure

Figure 1: Active control scheme.

However, for this technique to show satisfactogutts, there are several factors to be considemadng them the
type of actuator and sensor used as well the tfperdroller. Thus there are many researches ekkat¢his issues and
one of them concerns piezoelectric material, wihaicts both as sensor or actuator. Some advantaglessef materials
are the low weight added to the structure, combiodtie fast response.

Most flexible structures are distributed paramesststems and these infinite-dimension problemsnatepractical
for control design, so some mathematical techniguesised to bring these systems to finite dimessimd one of the
most used is the Finite Element Method.

This paper proposes to model an Euler-Bernoulltiearer beam as well to incorporate the piezoeies@nsors and
actuators dynamics using the Finite Element Metidtirwards it will be developed a control desigoth in the time
and in the frequency domains in order to compagadBults obtained by them.
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2.DYNAMICSOF EULER-BERNOULLI BEAM AND MODAL ANALISYS

The Finite Element Method is a numerical procediaresolving physical problems governed by a diffdia
equation or an energy theorem. It has two chariatiter that distinguish it from the other numerigabcedures: a)
utilizes an integral formulation to generate a eysf algebraic equations and b) uses continucerepise smooth
functions for approximating the unknown quantitygoiantities (SEGERLIND, 1984).

The Euler-Bernoulli beam equation is represented by

0°v  0? 0%V
p— + (EI j: a(x,t) (1)

ot ox*\  ox®
Where V(X,t) is the beam transversal displacemegd, is the mass density per volum& is the Young

Modulus, | is the Inertia Moment ana{(X,t) is the external applied load.

It was considered the typical beam finite elemeith wvo nodes and two degrees of freedom per nasishown in
Figure 2 below.
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Figure 2: Beam finite element

The spring-mass system motion equation without diagngan be written as:

(mM{{d}+[K]{d}={F} @

[M ] = mass matrix
[K] = stiffness matrix
{ F } = load vector

{ d } = displacement vector

To determinate the system eigenfrequencies, thikeddpad shall be done equal to zero.

m){d}+[k]{d}=0 e
Whereas the free vibration movement is a simplenbaic, the solution can be of the type;

d(t) = Dsin(at) (@)
And, finally, substituting (4) in (3), it is pos$#bto write;

[[K]—af[M]J{d}=0 (5)
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Last equation represents a problem of eigenvalueharacteristic value. The amount 6:02 are eigenvalues or

characteristic values indicating the square rodghefnatural frequencies, while the correspondilges of vectord
indicates the vibrating system shapes (eigenvéctors

3. PIEZOELECTRIC TRANSDUCERSDYNAMICS

The piezoelectric effect was studied in 1880 inrtpuarystals, by Pierre and Jacques Curie. Thisceffonsists
basically on materials geometrical deformation wtiexy are subjected to an electric field and coselgr they produce
electric polarization in response to mechanicasstes. Some of the most used materials that exshitlit property are
the PZT ceramics (Piezoelectric Transducer) anstipllms PVDF (Polyvinylidene Fluoride).

The PZTs are made basically by lead oxide, ziraonand titanium and by having a large stiffness they
indicated to be used as actuators. On the othet R&DFs are robust and flexible polymers which barproduced in
complex geometries; they are flexible and havéeliteight. For such characteristics, they are duite distributed
sensoring.

The piezoelectric effect has a linear dependentedas induced strain and applied electric field.ifSbe electric
field direction is reversed, the deformation dir@etwill be also reversed.

These materials generally show a good linearityhératio between the applied electric field ardliced strain, but
when they are subjected to an electric field withhhintensity the polarization saturation phenonreecurs and
causes the electric dipoles inversion leading sigaificant hysteresis and nonlinear ratios betwelectric field and
induced strain. Another behavior that should beeplex] in the use of piezoelectric materials is thattemperature
should not exceed a threshold value, named Cunepdeature, from which there is a spontaneous nateri
depolarization and loss of piezoelectric charasties. But at temperatures below the Curie tempszathese materials
show a relative insensitivity with respect to temgere variation.

3.1. Euler-Bernoulli beam element electromechanically coupled

In the electromechanical coupling, the structutahent has three degrees of freedom per node, techamical
(one lineaw; and one angula®; displacements) and one related to electric poteptia
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Figure 3: Beam finite element electromechanicadlypied.
3.2. Coupled electromechanical structure model

The finite element method basic idea is to usewdmables as parameters for a nodal finite numbdepoints

previously chosen. Performing this procedure, ibaldcementsd can be written as elements function using the ihoda
interpolation functions. This relation is expresssdollows below;

d=N,d (6)
where,

Nd = interpolation function (shape function)

di = displacement at node
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Besides the displacements it is also necessargrtsider as nodal variable the electrical potenﬂbl,Anangously
we can write it as;

¢ = N¢ ?, (7)
where,

N¢ = interpolation function (shape function)

¢i = electrical potential at node

To find the piezostructure motion equation, it waed Lagrange's equation. This formulation considezchanical

degrees of freedom, which describe the movemesaah structural element defined B‘y and the electrical degrees of
freedom¢ defined by the electrical potential. Thus Lagrasgguation is defined by;

i(%j_%:[:
at\ad ) ad ®)
and
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with

F = external forces applied
Q: induced electric charge

L = Lagrangian defined as
L=T-U+W, (10)
where,

T = kinetics energy
U-= potential energy

W, = work of electrical potential

After mathematical manipulation, the final overaibtion equation for a coupled electromechanicalcstire is
defined by:

Md +Dd + Kd = F - K ,K (11)

where,

M = mass matrix
D = damping matrix
K = stiffness matrix

Kd¢ = electromechanical coupling matrix

K¢¢ = piezoelectrical capacitance matrix



Proceedings of COBEM 2011 21* Brazilian Congress of Mechanical Engineering
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil

4. PIEZO-STRUCTURE CONTROL

The control theory has two basic strands: the ffaqy domain (classical control) and time domain dera
control). In modern control theory, dynamic modate represented in the frequency domain by trarisfetion that
characterizes the ratio between system input atligu.e. the system transfer function is représgiby time invariant
linear differential equations defined as the ragtween the output and input signals Laplace tosinsf

The modern control theory is based on the dynamétess description by means woffirst order differential
equations that can be combined in a vector-maitfferéntial equation of first order (PALMA, 2007T.he modern
control techniques allow the systems design witlglsi input and single output (SISO) and multivaleabystems,
multiple input and multiple output (MIMO) as easilye. increasing the number of state variables dmt increase the
equations complexity.

4.1. State observer

A control system with state feedback can not beedehen some system variable is not available fasuement,
unless this variable is estimated. When a comprntether device estimates this variable, it is néduthe state observer
or simply an observer. The state observer is a enadlical model used to construct a physical sydiased on the
sensor (OGATA, 2003). For a control system withtestieedback, which was used in this work, we cam the
estimated states as the feedback system.

The procedure is described as follows: The obserempares the output value of the real system tlighobserver
and the output is fed back to a gainThe estimated states are used to provide therysiith a real gairK. To
determine the gains value there are several metihogarticular in this paper we use the Linear @yatic Regulator,
which was originated from the theory of optimal woh This theory basic idea is to obtain a perfanece function and
design a control law to minimize the first.

5.RESULTS
In order to simulate the subjects above exposedstchosen a beam according to the Figure 4 below.
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Figure 4: Beam model used in the simulation

The material properties as well the beam geomeérpeesented in the Table 1. The damping malixis proportional
to the mass and stiffness matrices, and the cdsstased werea = 0.001 andp = 0.0003 for the relation

D=aM + 8K

Table 1: Beam data used in simulation

Young Modulus (MPa) 70000
Poisson ratio 0.3

Mass density (kg/ m3) 2710
Length (mm) 300
Width (mm) 20
Height (mm) 5

It was analyzed the first four eigenmodes usingRiméte Element Method theory developed in this kvarthose
results were compared to a commercial FEM softwHne.results are shown in the Table 2 as follow.
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Table 2: First four eigenfrequencies

Eigenfrequencies (Hz)
Eigenvalues FEM — this work FEM — commercial Error (%)
software
1° 9.0626 9.0477 0.164683
2° 56.7946 56.7629 0.055846
3° 159.0337 158.4179 0.388719
4° 311.6973 309.4849 0.714865

In possession of these data it was plotted theféits eigenmodes based on the values calculatedea hese plots
were done both by the theory developed in this wliture 5, and also by a commercial FEM softwkigure 6.
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Figure 5: First four eigenmodes — this work

First eigenmode Second eigenmode

Third eigenmode Fourth eigenmode
Figure 6: First four eigenmodes — commercial FEKiveare

As can be seen, for the structure eigenfrequemidssigenmodes, the model developed in this wookvell good
results and can be considered to progress thesimaly

The next step was to model the piezo-structuragyusie geometrical and electrical physical propsrdescribed in
Table 3
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Table 3: Piezoelctric data used in the simulation

Young Modulus (MPa) 62000
Elasticity constant (MPa) 92.3e3
Piezoelectric voltage coefficient (C/mm2) -1,63E-05
Dielectric Constant (F/mm) 3,36E-11

Mass density (kg/ m3) 7.5e-6
Length (mm) 20
Width (mm) 20
Height (mm) 0.26

This work used two actuators (one for control inpatl other for disturb) and one sensor. No spéeidnique was
used to define the sensor/actuators placement,sbite candidate positions and finally chosen thogh less
interference to the eigenfrequencies as shown gurgi7 (BUENO, 2007). The structure for the eletohanical
coupling was divided into 15 elements and the Pgmgth is equivalent to one element.

control
actuato

disturb
actuato

sensor

Figure 7: Sensor and actuators positions on thenbea

Since the sensor and actuators positions have defered the new eigenfrequencies were calculateddcampared
with those obtained previously without PZTs. Theakies are shown in the Table 4.

Table 4: First four eigenfrequencies with and withBZT

Eigenfrequencies (Hz)
Eigenvalues without PZT with PZT
1° 9,0626 9,3670
2° 56,7946 56,1671
3° 159,0337 158,0544
4° 311,6973 311,6873

An impulsive input was used to excite the systeh e system frequency response function was aatai@nly
the first five eigenmodes was considered in theukted system. The frequency response functiothfoisystem with
and without controller is presented below in Fig8re
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Figure 8: Frequency response function for the systith and without controller.

According to the figure above, greatest attenuaticcurred in first three eigenmodes, which wasitital propose
for the control design.
The system response with and without control fer same impulse input in the time domain can be sedhe

Figure 9.
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Figure 9: Time domain response for the system auitth without controller.

The first three eigenmodes particular behavior lsarseen in the Figure 10, considering the impulgipait and
comparing the controlled (red line) and non-coméiblue or black line) system, both in time arehfiency domain.
This is possible because the system was modeledodal coordinates and placed in canonical formr aftéinear
transformation, where each diagonal element reptesme eigenmode.
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Figure 10: Eigenmodes in time and frequency dométim and without controller.

For examining the graphics in Figure 10 for theivithal modes, it is possible to conclude that treatest
attenuation occurred in the first mode and the kiveecurred in the third. It has been proposeddmtrol design, once
the first mode is the one with higher amplitude.

5. CONCLUSIONS

This paper presented a flexible structure anallytivadeling procedure and a vibration active conteoinsidering
sensors and actuators coupling. The system matnees obtained by the finite element method and tredidation
were obtained using commercial FEM software. Senand actuators model have also been obtainedhity élement
method becoming easier their incorporation in theucture. It was applied a linear transformation ttee
electromechanical coupled structure model whicbvald to work with the modes separately. This tramsétion
became easier the control implementation sinceas possible to reduce the system model, working with the
interested modes. It decreased the order systerrednded the computational cost.

It was used an optimal control technique, in patéic the linear quadratic regulation to determihe tontroller
gain, and an estimator based on Kalman filter, tvliscan excellent observer in the presence of winiee and has
guaranteed stability margin. These methods advaritagelated to robustness, since they can befosedore complex
structures only performing some modifications. @& other hand, to determine these method paranisteot trivial,
because it is commonly used trial and error. Inegaln the controller designed was efficient, widspect to the
proposed objectives in the simulations with thelyaital model. The problem related to the sensat actuators proper
positioning was neglected here but it is known thiaiterferes on the system stability as wellctsmtrollability.
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