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Abstract: This work deals with viscoelastic materials characterization, applied in beam like structures, can be used in 
finite element model. The damping is increased by the application of viscoelastic treatment coupled of the structure. It 
is performed experimental procedures of vibration testing in the structure with viscoelastic material. The structure is 
subjected to an excitation by means of an hammer impact. The dynamic responses is obtained in frequency response 
function (FRF) and in time in various positions of the structure. Mathematical modeling computationally implemented 
and the experimental results do not only allow to evaluate the performance of viscoelastic materials, in terms of 
reducing the vibration levels, but also validate the mathematical procedures for incorporation of viscoelastic damping 
in finite element models. 
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1. INTRODUCTION  
 

Among the different strategies to control noise and vibrations of mechanical systems, the passive control techniques 
deserve attention by researchers due to its low cost and inherent stability. The fact of application of viscoelastic 
materials are present in several industry sectors, has meant that, currently, many studies are conducted in order to 
develop formulations and numerical models to describe the behavior this damping mechanism. 

According FINEGAM and GIBSON (1999) because of the reduced of the system complexity required damping, 
passive damping techniques compared with active techniques are those that contribute most to improve the reliability of 
machines and structures. Furthermore, they are considered stable, secure and have low energy requirements as opposed 
to active control, which requires the use of amplifiers often quite complex. Thus, the combination of materials (metal or 
composite) with passive damping techniques, especially using viscoelastic materials, is an extremely interesting strategy 
in the design of complex structures of engineering, making them more efficient and reliable. 

The analytical study of vibration control is relatively complex, which justifies the use of numerical techniques, 
treating the problem as a discrete problem. Among the different techniques of numerical modeling, the finite element 
method (FEM), has proved the most suitable for modeling of various structures, mainly because of its advantageous 
features of modeling flexibility and relative ease of numerical implementation. In addition, the FEM is now a very 
evolved engineering tool, whose potential and limitations are widely known or studied. 

The FEM is the discretization of continuous systems, ie the division of the domain (system) into subdomains called 
finite elements of simple geometry (eg triangles and / or rectangles to the bidimensional analysis). These elements are 
connected to neighboring elements by points called nodal points or simply us. Within each element the values of fields 
of displacements at the nodes are calculated using the approximation functions (polynomial interpolation functions). 
Therefore, the unknowns of problem will became the values of the displacements at the nodes, these unknowns are 
known as degree-of-freedom elementary. With this, it is possible to realize the assembly of the arrays of elements to 
construct the matrices and the global vectors, according to the conditions of compatibility and equilibrium at the nodes 
shared by neighboring elements. Finally we impose the boundary conditions necessary for the resolution of the system 
of equations. 

The result is a system of differential equations in terms of state variables. The solution of this system, in static or 
dynamic analysis, indicates the responses of variables to the equilibrium condition of the system. The choice of state 
variables is based on the nature of the problem. 

This work deals with viscoelastic materials characterization, applied in beam like structures, can be used in FEM 
Model. 

 
2. APPLICATION OF VISCOELASTIC MATERIALS IN THE DAMPING OF VIBRATIONS IN BEAMS 
SANDWICHES 

 
The application of viscoelastic materials between the structure and constraint layer contributes significantly to the 

rising rate of damping of these structures, therefore, they has not structural function. As a result, the characterization of 
the energy loss of viscoelastic materials is important to obtain this increase in damping ratio. The viscoelastic material, 
when associated with the main structure, may be subject to deformation extensional or shear, depending on the way it is 
applied. The strategy that forces a shear behavior of viscoelastic material is pretty referenced in the technical literature 
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by the name of sandwich beams, which consists of the interaction of a system of at least three layers: structure, 
viscoelastic material and the restriction. 

The operation of the damper type sandwich beam is given by the action of the layer of restriction on the damper 
material, deforming by the shear when the structure is subjected to bending. Generally, it is used for the same restriction 
layer for structure material, being rigid enough to track the vibrating movements of structure and promote the 
deformation of the damper material. Thus, these deformations occur in the damper layer material resulting in the 
dissipation of vibration energy, and the consequent increase in the damping of the structural system (SILVA, 2007). 
 
2.1. Viscoelastic Behavior by Finite Element Method 
 

Consider the following finite element model of a structure treated with viscoelastic material represented by equation 
(1) in the frequency domain. 

 

           fumk  2,T  (1) 

 

Where   T,k  is the complex part, and is the complex stiffness matrix of element that depends on frequency and 

temperature since the behavior of viscoelastic material is represented by the complex modulus. 
Assuming that the structure is composed of elastic and viscoelastic elements, the global stiffness matrix of the 

structure can be decomposed as follows by equation (2): 
 

              fKK ve   umT 2,  (2) 

 

where  eK  represents the stiffness matrix corresponding to purely elastic substructure, and   T,vK   is the 

complex stiffness matrix of substructure viscoelastic. Assuming that for isotropic materials, the coefficient of Poison is 
independent of frequency and temperature, the complex modulus can be divided into imaginary and real stiffness. 

Performing the normalization, the stiffness matrix  vK  given by equation (3) is independent of the frequency and 

temperature of the system. 
 

           vv KTiTEKTETK ,1,,,   
v  (3) 

 

Where the imaginary part of   TKv ,
 represents the damping matrix proportional to the system. The 

implementation of the dissipative behavior of the material in most commercial finite element codes is accomplished 
through an equivalent damping matrix, formulated as follows in equation (4): 
 

        veq K
TTE

TC


 ,,
,


  (4) 

 
Thus, we obtain from the equation (5) the global equation of finite element structural harmonic subproblem: 
 

                fuMCiKTEK eqve  2,  (5) 

 
2.2. Experimental testing 
 

Based on the method described by ASTM Standard (FAISCA, 1998) was prepared a test rig to enable a cantilever 
beam experiment. The material used for the preparation of the beams is aluminum. The aluminum beams were 
fabricated at the Laboratory of Mechanics UNIFEI. The physical and geometrical characteristics of the beam tested are 
detailed in Table 1. 

 
Table 1. Physical and geometrical quantities of simple beams. 

 
ME L [mm] B [mm] H [mm] I [m4] Mass [g] 

Aluminum 920 38 2 2.53. 10-11 214.35 
Aluminum and VM 920 38 3 8.55. 10-11 250.73 

  VM - Viscoelastic Material. 
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To obtain the dynamic characteristics of the beam tests were performed using free vibration through, an impact 

hammer, and a laser vibrometer. The beam’s modal parameters were obtained using the technique of logarithmic 
decrement. The responses in both time and frequency were obtained from analyzer SRS - Stanford Research Systems 
model SR 780. All tests occurred at a constant temperature of 23 ºC and relative humidity 70 %. Each resulting value is 
the average of ten tests, with five replicates, totaling fifty replicates for each test.  

Later testing with the beam, a layer of viscoelastic material was applied, characterized by a ribbon-type Double-
Side Acrylic Mass Model 287. Is shown in the Table 2 geometric characteristics of the material used. 
 
 

Table 2. Physical and geometrical quantities of Double Face Tape. 
 

Type 
L  

(mm) 
B  

(mm) 
H  

(mm) 
Double Face  920 19 1 

 
Is shown in the Figure 1 the process of making of the viscoelastic material adhered to the aluminum beam. Was 

necessary to put two layers of the same to fill the entire area of the beam. 
 
 

 
Figure 1. Fabricating the aluminum beam with double side tape. 

 
 
2.3. Result and Discussion 
 

Are presented, in Table 3, the first three vibration modes of the beam, considering aluminum and aluminum with 
viscoelastic material, respectively. The calculated values of logarithmic decrement, the damping factor, and system loss 
factor also are presented. The damping factor  have values between 0.014 and 0.100, which is representative of the 

behavior of an underdamped system. It is possible to verify that the loss factors   of the system increased significantly 

when using the double-sided ribbon acrylic mass. They values are characteristic of the viscoelastic material that have a 
great energy dissipation capacity. The loss modulus E  of the aluminum beam ranged from 88.23 to 22,264 GPa and 
32 to 6,811 GPa for the beam with viscoelastic layer. 

 
Table 3. Results obtained in the laboratory. 

 
ME Mode fn (Hz)       

Aluminum 1st 2 1.02 1.60X10-1 3.25X10-1 
Aluminum and VM 1st 2 1.36 2.10X10-1 4.35 X10-1 

Aluminum 2nd 12 1.90 X10-1 3.00X10-2 6.10 X10-2 
Aluminum and VM 2nd 11 5.70 X10-1 9.10X10-2 1.80 X10-1 

Aluminum 3rt 33 7.10 X10-2 1.1X10-2 2.20 X10-2 
Aluminum and VM 3rt 31 9.00 X10-2 1.4X10-2 2.80 X10-2 
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Table 4 shows the calculated results of storage modulus, loss modulus and complex modulus. The storage module 
refers to the elastic part of the system. 

 
Table 4. Calculated results. 

 

ME  Hzfn   GpaE   GPaE    GPaE  

Aluminum 2 83.90 27.27 88.23 
Aluminum and VM 2 29.67 12.90 32.36 

Aluminum 12 2945.74 181.65 2951.33 
Aluminum and VM 11 864.29 158.71 878.74 

Aluminum 33 22258.86 505.88 22264.61 
Aluminum and VM 31 6808.33 195.46 6811.14 

 
It is observed by means of figure 2 that the behavior of the displacement amplitude varies with the natural 

frequency of the system and especially with the use of viscoelastic material attached to beam. With the use of double 
side ribbon, we see an attenuation of vibration and a drop in natural frequency of the system, which was already 
expected due to the increase of mass system and the characteristic of viscoelastic. 

 
 

 
Figure 2. Frequency response for the tested beams. 

 
 

In table 5 are shown some natural frequencies of the aluminum beam without damping. The beam was clamped 
at one end with a length L = 0.92 m, width B = 0.038 m and thickness H = 0.001 m, Young's modulus E = 70 GPa and 
density ρ  = 2,700 kg/m3. The first five natural frequencies of the model are presented in Table 5. 

 
 

Table 5. Undamped natural frequencies. 
 

Vibrate Modes Calculated Frequency (Hz) Frequency Measurement (Hz) 
1 2.00 2.01 
2 12.57 12.00 
3 35.28 33.00 
4 37.79 37.00 
5 69.47 66.00 

 
 
 

We Conclude that the results obtained using viscoelastic material, the beam has a great response with damping, 
showing the effectiveness of the response of the viscoelastic layer structure. The viscoelastic layer has changed the 
natural frequency of the structure and proved quite useful in reduction of vibration 

 



Proceedings of COBEM 2011         21st Brazilian Congress of Mechanical Engineering 
Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 
  

 
3. ACKNOWLEDGEMENTS 

 
The authors thanks the Coordination of Improvement of Higher Education Personnel (CAPES) and Foundation for 

Research Support of Minas Gerais (FAPEMIG) for granting the scholarship and financial support.  
 

 
4. REFERENCES 

 
FAISCA, R.G., Characterization of viscoelastic materials as structural dampers. D.Sc Thesis. COPPE/UFRJ, Rio 
de Janeiro, RJ, Brazil, 1998. 
FINEGAM, I. C. and GIBSON, R. F., 1999, “Recente Research on Enhacement of Damping in Polymer 
Composites, Composite Structures”, Vol. 44, pp. 89-88. 
SILVA, RODRIGO PENA. Development Methodologies for characterization of viscoelastic materials at low 
frequencies. 2007. 87 p. Dissertation (Master Civil Enginnering), Federal University of Rio de Janeiro, Rio de Janeiro, 
2007. 
 


