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Abstract. This paper concerns the identification and vibrateontrol of a flexible structure. A state-spacedeimf the
system is used in the implementation of a digitadtioller to control the first two modes of a cdenier beam. To
determine the parameters for the model of suchstey, the Eigensystem Realization Algorithm (ERAYten used,
However, this was developed for an impulsive inpot here white noise was used for system ideatiific. Thus, a
variation of this algorithm called Observer/Kalméiiter Identification (OKID) was used instead. Tln€orporates a
state observer, which means that the system caddmtified for any input. The system identificatiprocedure is
outlined in some detail. The control system wadeémpnted in real time on an aluminium cantilevearne which had
a PZT patch bonded to it as an actuator and a @afed PVDF patch which was used as the sensorastshown
experimentally that such a control system, coupléith the actuators and sensors, is capable of iasiey the
damping ratio of the first mode of vibration of antilever beam by an order of magnitude, when isubject to
impulsive excitation.
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1. INTRODUCTION

The accuracy of the mathematical models of dynaystems is essential for the success of modernmatdatvs.
Several methodologies are available to identifyrtishematical representation of a physical strecturphenomenon.
Among these methodologies, the Eigensystem Reializvalgorithm (ERA), Juanget al. (1985), and its derivative
ERA/OKID (Observer/Kalman Filter Identification),udng et al. 1993, belong to the category of black box
identification, where the model of a system is tdfesd through experimental data.

The identification process, such as the least sgoeathod (Gauss, 1809), has been studied by maegnehers. In
the twentieth century (mostly since 1965), the fobas been on building models to be applied inrobptoblems. In
1965, two influential papers were published, (Hd &alman, 1965) that led to the subspace identiicamethod and
(Astrom-Bohlin, 1965) that led to the PredictiorrdErmethods, (Gevers, 2006). The ERA belongs tostitespace
identification class and is based on realizati@otlg, that is, the computation of the triplaf B, C] , which correspond
to the state matrix, the input matrix, and the autpatrix respectively. They are obtained from noeed data, in this
case, the impulse response function (IRF), fronciviihe Markov parameters can be determined. The &R only be
used if the IRF is known, and sometimes this isthetcase. With the OKID method, the ERA can bel wgi¢h other
signals (Juanget al. 1993). This identification method uses a stateenles in the process allowing the Markov
parameters to be obtained through the responssighal that is easy to generate, for example widiee, which is the
case in this paper. Here, a state-space modetahtdever beam is generated using the OKID methduch is then
used in an Linear Quadratic Regulator (LQR) cofdrolOgata, 2008) to experimentally control theratibn of the
beam. The beam has piezoelectric elements bodiéds the control actuator and the sensor, aaddntroller was
implemented using dSpace. The paper is organigedllows. The system identification procedure ésatibed in
Section 2, the control of the beam in Section 8, same general conclusions are given in Section 4.

2. SYSTEM IDENTIFICATION
2.1. Overview

System identification is the process of finding atimematical model that represents the dynamicaetr of the
physical system under consideration. This model bwlinear or nonlinear, continuous or discreta, time variant or
invariant. There are basically two important methlodies in system identification: parametric anch4parametric
methods. Non-parametric methods are those thaiughr input/output data, obtain a graphical repredgem of a
system. This representation may be the impulseoressp function or the frequency response functiarametric
methods, such as the one described in this pagténage the parameters that represent the systengih experimental
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data. Among the parametric methods are the ERAaanersion of this which incorporates a state olmemthe ERA/
OKID method. These methods are described in thisose and are applied to a cantilever beam, widzgelectric
actuators and sensors attached, The resultingsgiatee model is used in Section 3 in the desigheo€ontroller which
is implemented experimentally on the beam.

2.2. Eigensystem Realization Algorithm

The ERA was developed in 1985 by Juang and Pappatiimate the state matrices of a linear, disaatetime-
invariant system. The state matrices are estimdenigh the discrete time Impulse Response Fung¢tiRR) of the
system. This is then built into the Hankel matmdavia Singular Value Decomposition (SVD), a setr@dtrices that
describes the realization in state space is olitai@ensider the discrete space state realizatiangeineric system

x(k+1) = Ax(K) + Bu(k)
y(£) = Cx(&) + Du(X) (1a,b)

whereA is the state matrixB is the input matrixC is the output matrixD is the direct transmission matrix(X) is the
state vectoru(k) is the input (control) vector any{%) is the output vector.

Assuming zero initial conditiong(0)=0, and an unit impulse input at a given instaf®)=1, then the corresponding
equations fok=0,1,...]-1 is:

0, k<t
u(k) =41, t=k (2)
0, k>t
Then,
x(0)=0 = y(0) = Du(0)
x(1) = Bu(0) => y(1) = CBu(0) + Du(1)
x(2) = ABu(0) + Bu(1) = y(2) = CABu(0) + CBu(1) + Du(2)

x(1-1) = Zﬁ;}Ai‘lB:u(l -1-9 = y(l—1) =Y CcA'Bu(l—1-i) + Du(l — 1) (3)
The Markov parameters of the system are giveBoe3D, Z;=CB, Z,=CAB, Z;=CA?B, .., Z;=CA*1B,
2.3. Observer/Kalman Filter Identification

The relationship between the outgik) and the inputi(4) can be put in a matrix form as

Y=ZU (4)
where

Y=[y(0) y(1) y(2) .. y(F1)]
Z=[D CB CAB .. CA“B]

and
u0) u(d) uw@ .. ull-1
[ u0 u@® .. ul- 2)]
U=| u0) .. u(l-3)|
B

Because of the low damping in many flexible struesuthe decay of free vibration takes a long tiasediscussed
by Alves, 2005. From the structural control poifitview this means the delay time is very largetHis context, it is
necessary to use a state observer, that introdutiésial damping in the system, decreasing thegth of the vector of
the data acquired.
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Adding and subtractin@y(k) to the right-hand side of the state Eq.(1) andlioimg this with Eq. (2) results in

x(k + 1) = Ax(k) + Bv(k) (5)

where

A=A +GC, B=[B+GD,—G], v={uk) yk)}’

in which the superscrigf denotes the transpose, anés an arbitrary matrix of appropriate dimensioo$#n to ensure
the system has the degree of stability require@. digenvalues of the closed-loop state matrix fetahle system have
negative real parts. The input-output matrix foomEq. (5) which corresponds to Eq. (4) is:

Y=ZV (6)

where

_ e g
Z=[D CB CAB .. CA” ’B ..cA" ”B]

is the matrix of observer Markov parameters, and

[u©) u@ w2 - u@E) - uw(-1) |
v(0) v@) - v(p-1) -~ v({-2)

v(0) -+ v(p—-2) -~ v(-3)

vi) - v(/-p-1

v(0)
2.4. System Markov Parameters

Overall, there are system Markov parameters andrebsgain parameters. The system Markov paramaterssed
to determine the system matricksB, C and D, whereas the observer Markov parameters are asddtérmine the
observer gain matrixG. To determine the system Markov parameter<Z ifrom the matrix of observer Markov

parameterg, it is partitioned as

=Y, Z, 7, Z,) (7)

whereZ, = CA*™B. The elements of this matrix can be written as

= _ =0 =@
=12, -7 (8)

where ZP =C(A+GC)* (B+GD) and Z? =C(A+GC)“ "G. NowZ, =CB=C(B+GD)-(CG)D, so that the
Markov paramete&, is given by

z,=7." 7D @)

To obtain the Markov paramet& , first considerZS” = C(A +GC)(B+GD) . This can be expanded and rearranged
to give
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7, =772, -7°D (10)

In a similar way the Markov parametgéris found to be

7, =7."-772,-707,0 - 7D (11)

By induction, the general relationship betweenatkeial system Markov parameters and the observamegder is

Zy=D
Z, = 7. — z(z) Zo; fork=1,..p
Z, = _Zizlzi Zk_i: fork=p+1, ... o (12a,b)

where p is the number of Markov’s parameters of the olesefhis must be chosen such thet > n, wherem is the
number of outputs andis the order of the system, (Alves, 2005).

The observer Markov parameters can be used asfie for computing the system Markov parametededd, the
matricesA, B, C, D andG are embedded in the observer Markov parameteesequ

Knowledge of the system Markov parameters allowtte-space realization as discussed in section 2.2
2.5. Observer Gain Markov Parameters

The observer gai@ can be identified by the following procedure. Eitst

Y2 = CAK1G;  k=1,2,3,... 13)
In terms of the observer Markov paramef®tsis given by

=¢G=Z? (14)
ThenY; is obtained by considering that

7.7 — CAG = (CAG + CGCG)

= YO HZYY (15)
which yields
ve = 77°7%ye 16}
Similarly,

7.0 = CA G- (CA%G + CGAG + CAGCG)

=),

= Y3 +Z1 Yz +ZZ Yl

Yo =7 —ZoYS — TP 17)
The general relationship is given by

52

Y? = Zk - Z};f Zi(z) Yo ;; fork=2,..p
Yo = SR ZO0Ye 5 fork=p+l, .. (18)

After obtainingYy = CAP~2G, k =1,2,3,...k, the observer gai@ can be computed by

G = (PTP)"'PTY° (19)

where
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(20)

2.6. Experimental Identification of the Model

The techniques described in the previous subsectia@re applied to identify the state-space matrfde8, C and
D) of the aluminium cantilever beam with dimensi@s4 X 42.0 X 2.0 mm, shown in figure 1. The system was
excited by white noise, over a frequency range té 800 Hz, using a Lead-Zirconate-Titanate (PZdtuator with

dimensions: 42X 23 X 0.2 mm. The vibration was measured using a Paldéme-Fluoride (PVDF) patch of
dimensions 30.X 10.0 X 0.2 mm positioned at the root of the cantilever.

Cantilever Beam

PZT-actuator

Figure 1. Cantilever beam with PZT and PVDF coup{@tie PVDF element is attached to the other sidbeo
cantilever beam and is co-located with the actjator

Using the method presented in section 2, the Magaerameters of the observer and the system werelatdd, and
consequently a state-space model of the cantilesam was determined. As it was intended to cowmindy the first
two modes of the system, it was necessary to rethgstate-space model to a fourth order model. Hérekel norm
model reduction technique (Gawronski, 1998), wasdug§ his method allows the mapping of past inpuid future
outputs through states of the system and quanttiiesndividual contribution of each state. Theesdahat contribute
least are discarded. The identified system matiAcd3 ,C andD of the reduced order model are given by

—4.7608 —487.3184 —-2.5197 —7.9764 0.2160
A= 496.2083 —4.2912 -—1.2954 4.8282 B= —0.3655
0 0 —1.0591  79.9404 | —0.0346
0 0 —81.1069 —2.2728 0.2747
C=[-0.4143 -0.0730 —0.2213 -0.1695], D=0

The measurement of the frequency response of sgteray(in terms of the voltage applied to the PZiaor and
the voltage measured from the PVDF patch) togeth#r the reconstructed frequency response fromntoeel are
shown in figure 2.

From figure 2, it can be seen that the frequersponse of the identified model is a reasonablemi the
frequency response of the actual system for tétiivo modes.
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Figure 2. The measured (actual) and the reconsttfotquency response of the system (identifieathfthe state
space model (a) magnitude, (b) phase.

3. CONTROL DESIGN AND IMPLEMENTATION

In this section, the controller design and impletagan using the results of the previous sectiediscussed. An
LQR controller was chosen as the structure andahéroller are both linear. The cantilever beanvshin Fig. 1 beam
was used in which the PZT patch was used as theot@actuator and the PVDF patch as the sensorcéhwoller was
implemented using dSpace and a PC. This board evagected to the control system into the computéichvreturned
a response to the amplifier connected to the PZis i§ shown in figure 3.

3.1. Controller Design

Consider the discrete-time state-space systemig#saorgiven in equation (1a,b). In this case thput vector is

given by

u(k) = Kx(&)

(21)

andK is the matrix of gains which are to be obtainedrgimization a performance index. The quadratidgrenance
indexJ with summation limits O teo (the infinite-horizon case) which is to be minie is given by (Andersoet al.,

1989)

J = Zico(x" (l)Qx(k) + u’(k)Ru(k))

(22)

where the matrice® > 0 andR > 0 determine the relative importance of the statand the control efforu
respectively. They also determine the relative importance of én®r and the control effort. In the practical €as
considered here, the matrix of gakishat was determined was for a finite-horizon case

The unknown elements of the matkare determined so as to minimize the performandexnsou(k) = -Kx(%) is
optimal for any initial stat&(0). To determine the elements of matkbwhich minimizes the performance index, it is
necessary to solve the Riccati matrix equationrglwe (Andersoret al.,1989)

A7(P-PB(R+B7PB)"'B’P)A+Q-P= 0

(23)
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where matricesA and B are the stateanc the input matrices, respectivel$kogestacet al.,2007). The matriP is the
unique positive definite solution tq. (23. After determining the matriR, the matrixof gain<K, can be found from

K = (R+ B7PA)'B’PA (24)

For LQR control of the cantilever timatrix Q was chosen to be the identity matrix of order 4 R was chosen to
be 1. The matriX was therdetermined to b

K=[-1039 —604 9 —20]

3.2. Experimental Implementation

The closed-loop block diagraaf the cantilever beam under contts shown in figure 3.

Control System

y .......................................................................
Acquisition Board (dSpace) ﬁ

State
PVDF Cantilever Beam Observer Space

sensor/—/ Model

actuator 4 u(k) =-Kx(k) IGain

AmMPIifier [S 7 e rrereeseeseeeat e et e e et e et eeeeeaneaeneean

Figure 3.The closed-loop feedback system.

The beam was disturbduly displacing the tigby one centimeteand then letting it freely vibre. Initially the
controller was turned off and the results of tlasttcan be seen in figure 4a. It can be seen tikatiamping in th
system is quite light as it takes a long 1 for the vibration to decay away. Close examinatiérthe time respons
showed that the beam was vibrating primarily infitadamental mode, and the damping | for this mode was
estimated to be 0.068&ing the method of logarithmic decrem

The exgriment was then repeated but this time with th&rotler turned on. The results are shown in figdioe It
can be seen that the vibration decays away mucle opaickly demonstrating the effectiveness of thetrdler. The
damping ratio in this case wésund to be0.2176. It is thus clear th#te main effect of the control 's to add more

damping to the system.
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Figure 4. Vibration of the cantilever beam measwsdg the PVDF sensor, (a) without and (b) withtoal.

4. CONCLUSIONS

This paper has described an experimental study fhé control of a cantilever beam. LQR control was
implemented, which required a state-space modehefsystem. This was achieved using the ERA/OKIBtesy
identification technique with the beam being driweith white noise. The subsequent model was redtwed fourth
order model as only the first two modes of the b&aare targeted for control. A displacement stepingas applied to
the tip of the beam and the controller, which sdngbration using a PVDF patch at the root of tearn, and applied a
control force through a collocated PZT actuataynsicantly reduced the time for the transient waition to decay away.
The damping ratio of the first mode was increasednf0.0682 to 0.2176 demonstrating the efficacyhef control
strategy.
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