
Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

A COMPARISON BETWEEN THE BOUNDARY ELEMENT METHOD AND 

THE HIERARCHICAL FINITE ELEMENT METHOD FOR ONE-

DIMENSIONAL ELASTODYNAMICS 

 
André Jacomel Torii, ajtorii@hotmail.com 

Marcelo Franco de Oliveira, marcelo.franco@ufpr.br 

José Antonio Marques Carrer, carrer@ufpr.br 

Roberto Dalledone Machado, rdm@ufpr.br 
 

Programa de Pós-Graduação em Métodos Numéricos em Engenharia (PPGMNE), Universidade Federal do Paraná, Curitiba, Brazil. 

 

Abstract. This paper presents a comparison between the Boundary Element Method (BEM) and the Hierarchical Finite 

Element Method (HFEM) for one-dimensional elastodynamics. The formulation of both the BEM and the HFEM for 

the problem being addressed is presented, and the main differences between them are discussed. The method of 

Houbolt is used for the time integration procedure for both formulations. Finally, one example is solved numerically 

and the results are compared with the analytical solution. 
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1. INTRODUCTION 

 

Many problems from physics and engineering can be modeled as boundary value problems and by initial value 

problems governed by partial differential equations. However, analytical solution of such problems is possible only in a 

few cases, when simple geometries of the domain and simple boundary and initial conditions are assumed. For most 

practical cases, however, some kind of approximate solution is necessary. In this context, numerical methods such as 

the Boundary Element Method (BEM)(Brebbia and Dominguez, 1992), the Finite Element Method (FEM)(Bathe, 

1996), the Finite Differences Method (FDM) (Ames, 1977) and the Mesh-Free Methods (MFM) (Liu, 2003) are the 

most widespread techniques used for solving such problems. 

A class of problems that frequently must be solved by numerical methods are those arising from elastodynamics 

(Timoshenko and Goodier, 1951). Elastodynamics concerns the propagation of displacement waves inside elastic media 

and structures, and consequently is of extreme importance for structural mechanics. Most structural designs nowadays 

need to take into account dynamic aspects, at least to some point. This fact is put in evidence by the number of 

structural failures that can be traced back to the lack of some kind of dynamic analysis. 

The FEM is probably the most widespread technique used for solving general structural analysis problems. 

Consequently, its application for structural dynamics is straightforward. Traditionally, the FEM is used together with 

time integration methods such as the Central Difference Method, the Houbolt Method, the Newmark Method or the 

Modal Superposition Method (Bathe, 1996; Hughes, 1987). However, it is well known that the standard linear FEM 

may give poor results for higher structural modes (Arndt et al., 2010; Carey and Oden, 1983). This can lead to poor 

results when solving the wave equation (Torii and Machado, 2010; Bathe, 1996) unless higher order approximations are 

used. Hierarchical Finite Element Methods (HFEM) (Solin et al., 2004) are probably the most efficient way of 

constructing higher order approximation for the FEM, and its accuracy for the problem being addressed has been 

demonstrated by Torii and Machado (2010). 

The BEM, on the other hand, is capable of giving very accurate results for the wave equation even when low order 

approximations are used, as demonstrated by Carrer and Mansur (2009). Consequently it seems that the BEM is more 

appropriate for the solution of the wave equation problems, in its natural form, than the FEM. However, some structures 

such as trusses and frames are difficult to model using the BEM, and consequently it cannot be readily applied to some 

problems. This enforced the use of the FEM in some cases, or in cases that modeling using FEM is easier. 

Here, the formulation of both the FEM and the BEM for the problem of one-dimensional elastodynamics is 

presented and the main differences between them are discussed. The main goal of this paper is to highlight the 

advantages and disadvantages of each method for the problem being addressed.  A complete essay on the FEM is 

presented by Bathe (1996) and by Hughes (1987), while the BEM is discussed in details by Brebbia and Dominguez 

(1992) and Brebbia et al. (1984). 

 

2. ONE-DIMENSIONAL WAVE PROPAGATION 

 

The one-dimensional wave propagation problem is governed by the following partial differential equation (PDE) 

(Timoshenko and Goodier, 1951; Kreyszig, 2006): 
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where u is the displacement, c is the wave propagation velocity, t is the time, f(x,t) is a time varying force and Ω is the 

domain of the problem. Together with the PDE it is also necessary to prescribe initial and boundary conditions, that are 

discussed in more details by Kreyszig (2006). 

When considering one-dimensional elastodynamics (only longitudinall displacements are allowed inside a linear 

structural element) the wave velocity is given by (Timoshenko and Goodier, 1951) 
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E
c  , (2) 

 

where E is the Young  Modulus of the material and ρ is the density of the material. That is, one-dimensional 

elastodynamics for longitudinal displacements is governed by the wave equation (Kreyszig, 2006). 

In order to solve the problem being addressed one needs to know, apart from Eq. (1), the initial and the boundary 

conditions to which the problem is subject. The boundary conditions will state whether the boundaries of the domain are 

allowed to displace or not. The initial conditions, on the other hand, will state the displacements and velocities and 

accelerations at initial time. In the context of FEM and BEM, however, it is customary to uncouple the x-t relation in 

order to apply very general solutions techniques. The main reason behind this choice is that both FEM and BEM are 

generally formulated for elliptic problems, but the wave equation is actually a hyperbolic problem. 

 

2.1. Time integration scheme 

 

The common basis of all time integration methods is that the continuous time variations are approximated by some 

discrete update rule. That is, we first assume that the solution will be computed at discrete time instants ti and then 

apply some approximate update rule. The time integration scheme used here is the Houbolt method (Bathe, 1996), that 

is defined by 
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where u represent the second time derivative of the displacements (accelerations), Δt is the time step selected and the 

indices of  1, , 1, 2n n n n    indicate time steps. 

Substituting Eq. (3) into Eq. (1) one gets 
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that does not depend upon t anymore, but only on the approximation to u . 

Equation (4) can be rewritten as  
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where 
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Note that Eq. (5) is elliptic (time variations have been removed by using the time integration approximation) and 

consequently its numerical solution is simpler. Besides, Eq. (5) can now be solved by techniques used to solve static 

structural analysis just by considering f as defined in Eq. (6) as a body force. That is why time integration schemes are 

so popular. Once the time discretization is applied the dynamic problem is reduced to a series of static problems that can 

be solved by standard procedures designed for elliptic problems. 
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Before continuing, it is important to mention that boundary value problems of the type of Eq. (5) have boundary 

conditions of the type 
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where the boundary of the problem is 21   . In this case, the boundary condition defined for u(x) are called 

essential boundary conditions, while the ones defined for its derivative are called natural boundary conditions (Bathe, 

1996; Reddy, 1998). 

 

2.2. Weak form – Finite Element Method 

 

The standard procedure for solving elliptic problems using the FEM is as follows (Carey and Oden, 1983; Reddy, 

1998). First, multiply the differential equation from Eq. (5) by some test function v and integrate in the domain to get 
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and then apply Green’s Theorem and rearrange to get 
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Equation (9) is known as the weak (or variational) form of the problem and is the starting point of the FEM. Note 

that the problem from Eq. (9) reduces the order of continuity required for the variables on the solution, since now it 

must respect the original problem in an integral sense. That is why this form is called the weak form of the problem. 

Besides, note that the natural boundary conditions appear on Eq. (9), but the essential boundary conditions do not. 

We now assume that an approximate solution uh will be sought that is of the form 
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and assume test functions of the form 
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Since the essential boundary conditions do not appear in Eq. (9), one must enforce that both uh and vh respect these 

conditions. The most common approach for ensuring this is by choosing uh and vh that automatically respect the 

essential boundary conditions. 

Substituting Eq. (10) and Eq. (11) into Eq. (9) one obtains the following system of linear equations: 

 

FKu  . (12) 

 

The whole procedure is described in details by texts on the FEM (Bathe, 1996; Hughes, 1987). Assuming the force 

vector F is as given in Eq. (6) the system of linear equations from Eq. (12) can be rewritten as 

 

)(tfuMKu   . (13) 

 

The problem can then be solved using the Houbolt method, or any other time integration method, by solving Eq. 

(13) for each time step, where the force vector f is a vector of applied forces. More details on the application of time 

integration schemes for dynamic analysis are discussed by Bathe (1996) and Hughes (1987). 
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By using standard FEM procedures one is able to build the functions used to approximate the solution given by Eq. 

(10). In a standard FEM, polynomials of degree up to two are generally used, since generating polynomials of higher 

order can be cumbersome. However, the Hierarchical approach (HFEM) allows one to easily build approximations of 

arbitrary order, by making use of Lobatto polynomials. A detailed presentation on the HFEM is given by Solin et al. 

(2004) and the application of hierarchical basis to the problem being addressed is discussed in details by Torii and 

Machado (2010). 

 

2.3. Integral form – Boundary Element Method 

 

If Green’s Theorem is applied to Eq. (9) then the problem is weakened (posed under less strict conditions) once 

more (Brebbia and Dominguez, 1992). This gives 
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that is known as integral form of the problem. Integral formulations have been subject of research for many years and 

there is a rich literature in the subject (Roach, 1970; Tricomi, 1957). Besides, Eq. (14) is the starting point of the BEM. 

Note that one is able to get rid of the first domain integral from Eq. (14) in the case that the test function v
*
 is chosen 

to satisfy 
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where δ is the Dirac’s delta (Brebbia and Dominguez, 1992). 

Even if it seems difficult to conceive such a test function v
*
 that satisfy Eq. (15), it turns out that such functions are 

known as Generalized solutions (or Green’s functions) and there is a vast literature covering them (Roach, 1970; 

Tricomi, 1957). the function v
*
 that satisfy Eq. (15) for the problem being addressed is known to be (Brebbia and 

Dominguez, 1992) 
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Assuming that the test function is as defined by Eq. (15) and Eq. (16) the integral form from Eq. (14) becomes 
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that simplifies to 
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Note that in the case where no body forces are present and no time variations are considered (i.e, F= 0 everywhere) 

then the problem from Eq. (18) could be solved without performing any domain integral. 

The one-dimensional formulation is a very particular case of the BEM since in this context one does not need to 

assume an approximation to the solution uh in the boundary of the problem. This happens since it is necessary to 

evaluate the solution u at the boundary of the problem, that in this case is composed only by the two nodes at the 

extremes of the domain. The same does not hold for two and three-dimensional problems, since in these cases the 

boundary conditions are not defined on points anymore, but on lines and surfaces and thus one need to interpolate the 

solution there (Brebbia and Dominguez, 1992). Note, however, that in the problem being addressed need to 

approximate u inside the domain in order to carry the domain integrals and apply the time integration scheme. More 

details on the BEM are presented by Brebbia and Dominguez (1992) and Brebbia et al.(1984). 

Writing Eq. (18) for different ξ then gives the following system of linear equations (Thoaldo and Carrer, 2010) 
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where u is a vector of displacements and q is a vector of normal derivatives of u. 

As occurs for the FEM, the problem can then be solved using the Houbolt method, or any other time integration 

method, by solving Eq. (19) for each time step. More details on this subject are discussed by Brebbia et al.(1984) and 

Carrer and Mansur (2009). 

 

3. NUMERICAL RESULTS 

 

The problem studied here consists a bar with length L = 1, cross section area A = 1, density ρ = 1 and Young 

Modulus E = 1 presented in Fig. 1. Consequently, the wave velocity is c = 1. The bar is constrained at both ends and is 

subject to the initial displacement umax at the middle of the bar as depicted in Fig. 1. Besides, the initial velocities and 

accelerations are equal to zero at the initial time and there are no body forces. This problem can be solved analytically 

by applying standard procedures, see (Kreyszig, 2006). 

 

 
  

Figure 1. A bar constrained at both ends subject to an initial displacement. 

 

3.1. Solutions given by the BEM 

 

The problem was solved by the BEM using 5 and 17 nodal points (i.e, 5 and 17 d.o.f.). For each one of these 

discretizations two time steps were used. The first is obtained by the expression for an optimal time step as presented by 

Carrer and Mansur (2004), and the other is obtanaied with a time step that was found to be appropriate for the FEM. 

When using 5 nodes, times steps equal to 0.95 and 0.3 were used, and the results are presented in Fig. 2.a. When using 

17 nodes times steps equal to 0.24 and 0.1 were used, and the results are presented in Fig. 2.b. Note that the time 

window presented in Fig. 2a is not the same as presented in Fig. 2b. That’s because the solutions obtained with 17 d.o.f. 

are very accurate and consequently it is difficult to make comparisons for t < 200 when using this discretization. 
 

 

 
a) 

 

 
b) 

Figure 2. Displacement at the middle of the bar when using the BEM with a) 5 d.o.f. and b) 17 d.o.f. Note that the time 

window presented in a) is not the same as presented in b). 

 

 

3.2. Solutions given by the FEM 

 

The problem was solved by the FEM using 5 and 17 d.o.f. and considering a hierarchical finite element of order 

p = 2 (i.e., a quadratic finite element). For each one of these discretizations two time steps were used. The first is the 
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same that used for the BEM, and the other is the time step found to be appropriate for the FEM. When using 5 d.o.f., 

time steps equal to 0.95 and 0.3 were used, and the results are presented in Fig. 3.a. When using 17 d.o.f., times steps 

equal to 0.24 and 0.05 were used, and the results are presented in Fig. 3.b. Note that the time window presented in Fig. 

3a is not the same as presented in Fig. 3b, for the same reason discussed for the case of the BEM. 
 

 
a) 

 
b) 

  

Figure 3. Displacement at the middle of the bar when using the FEM for p = 2 (quadratic aproximation) with a) 5 17 

d.o.f. and b) 17 d.o.f. Note that the time window presented in a) is not the same as presented in b). 

 

 

3.3. Comparison between the solutions given by the BEM and the FEM 

 

From Fig. 2 and Fig. 3 one first conclusion can be drawn. Time steps that are optimum for the BEM are not 

necessarily suitable for the FEM. Note that when using 5 d.o.f., the BEM obtained best results for a time step equal to 

0.95 while the FEM obtained best results with a time step equal to 0.3. The same occurs when using 17 d.o.f.; the BEM 

obtained best results with a time step equal to 0.24, while the FEM obtained best results with a time step equal to 0.05. 

We also note that both methods are able to give accurate results. Torii and Machado (2010) have shown that the 

linear FEM gives very poor results in some cases, and may not be an appropriate approach for the wave propagation 

phenomenon. However, the HFEM using a quadratic polynomial gives satisfactory results, and thus can be viewed as a 

viable alternative for the problem being addressed. 

In terms of numerical accuracy one final comparison can be made. In Fig. 4 the best results obtained with each 

method when using 17 d.o.f. are compared. Note that the optimal time step used by the FEM is smaller than the one 

used by the BEM. In this case, Fig. 4b seems to show that the FEM was able to give more accurate results for its 

optimal time step. However, the BEM obtained very accurate results for a much bigger time step, thus resulting in 

smaller computational effort. Finally, from Fig. 4a it can be seen that both methods were able to achieve very accurate 

results for the initial time steps, and the difference between them is barely noticeable. 

  

4. A GENERAL COMPARISON BETWEEN THE FEM AND THE BEM 

 

A general comparison between the FEM and the BEM is very difficult to accomplish. That’s because the FEM is 

based on the weak form of the problem, while the BEM is based on the integral form of the problem. This fact can be 

viewed as the main source of differences between the two methods. 

The first difference between them is that the FEM evaluates the solution on the entire domain of the problem, while 

the BEM needs to evaluate it only at the boundary of the problem in the case that no time variation occurs and no body 

forces are present. This is a very important difference in many applications, since the BEM may not need a 

discretization of the domain (unless for integration purposes) and this may represent a significant save in computational 

effort. The FEM, on the other hand, always need domain discretizations, a procedure that may be cumbersome in some 

applications, mainly for complex geometries. This leads to an increase in the computational effort needed by the FEM.  

However, in the case being addressed this is not a vital difference, since the BEM also needs a domain discretization in 

order to carry the time integration procedure. 

A second difference between the two methods is that the system of linear equations given by the FEM is solved, in 

general, for a symmetric positive definite matrix. The BEM, on the other hand, leads to the solution of a system of 

linear equations given by a non symmetric matrix. This is a very important feature since it is well known that solving a 

system of linear equations for a symmetric matrix is much easier than solving one for a non symmetric matrix (Kelley, 

1995). Indeed, it can be said that for the same number of d.o.f. the system of linear equations given by the BEM needs, 

in general, more computational effort. 
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a) 

 

 
b) 

Figure 4. Best solutions obtained with the quadratic FEM and the BEM for two time windows a) t=[0,100] and b) t 

=[650,700]. 

 

 

From the mathematical point of view, one important difference between the two methods is the requirement placed 

upon the form of the approximate solution. Note that the weak form from Eq. (9) needs an approximation that have first 

order derivatives that can be integrated (in the Lebesgue sense)(Reddy, 1998) , i.e., )(1 Hu . The integral form from 

Eq. (13), however, require only the approximation itself to integrable, and thus )(0 Hu . This is the reason why 

constant elements can be used in the BEM, while the FEM needs at least linear elements. 

Another aspect to be taken into account form the mathematical point of view is that the FEM is heavily based on the 

Galerkin Method and on Approximation Theory (at least in its more traditional formulation), while the BEM is based on 

the mathematical theory of integral equations and Green’s functions. In this context it can be said that both methods 

have strong mathematical backgrounds, but that most mathematical conclusion drawn for one does not necessarily 

apply to the other. 

From the modeling point of view, the use of the FEM can be advantageous in cases where the domain of the 

problem is composed of several sub domains. One classical example is the case of trusses and frames. Once a bar finite 

element or a beam finite element is formulated, its application to truss and frame structures is straightforward (Bathe, 

1996). The BEM, however, cannot be easily applied to trusses and frames, since special procedures are needed in order 

to connect different sub domains. 

Finally, the BEM and the FEM have two very important characteristics in common. First, from the mathematical 

point of view, both methods do not solve the approximate problem using its strong form. This leads to important 

implications in the theories behind them and computational aspects. The Finite Difference Method, for example, is 
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solved for an approximate problem based on the strong form, and this can lead to stability issues. Second, from the 

computational point of view, both the FEM and the BEM use some kind of “element”. This allows one to easily build 

approximate solutions, since the global approximations are built locally and then patched together. Note that this feature 

distinguishes these methods from Meshfree Methods (Liu, 2003), for example, where great effort is dedicated to the 

construction of appropriate approximations. 

 

5. CONCLUDING REMARKS 

 

The BEM and the FEM are both efficient methods for obtaining approximate solutions for problems governed by 

partial differential equations. The success of both methods is based on its sound mathematical foundations and its 

adequacy for computational implementation. 

This paper discussed the main aspects of the application of both the FEM and the BEM for the problem of one-

dimensional wave equation. It has been shown that the BEM and the FEM are based on different forms of the problem 

and this leads to most differences between them. However, both methods still have some common features, as the need 

for some kind of discretization. Besides, both methods are able to give very accurate results for the problem being 

addressed. 
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