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Abstract. This paper deals with the problem for the numbfeexdrema, that which may occur in the step- respoof

a stable linear system with k real multiple zerosl an real distinct poles. Some simple sufficiemtsd@tions and

necessary conditions are presented for analysesivzkeos located between the dominant and fastdstqmes not
cause extrema in the step-response. Sufficientitimnsi for existence of the overshoot and exterigee r, undershoot
in the step-response of the continuous time trarfsiections, based on their poles and zeros, aresented. The
authors also present a class of linear control &atontinuous time-system of minimum phase thabitundershoot
in the step response. Simple examples illustrat @mplement the main results of this paper. Tihwesalitions

require knowledge of the pole-zero configuratiothef corresponding transfer-function.

Keywords: Extrema, overshoot, undershoot, pole, zero.

1. INTRODUCTION

Automatic control has played a vital role in thevagce of engineering and science. In addition goeittreme
importance in space-vehicle systems, missile-guidasystems, robotic systems, automatic control dex®me an
important and integral part of modern manufacturargl industrial processes (Franklin, 1991; Dorf)2200gata,
2005).There exist some control problems, such ahima tool axis control and trajectory-following riabotics, where
the step-response cannot exhibit local extremaeraévworks have been done to clarify the influeatéhe zeros on
the transient part of a step-response (Stewa200§; Darbha, S., 2003; El-Khouey alii, 1993; Howell, 1997; Rachid,
1995; Leon de la Barra, 1994; Retsalii, 2010: a-e, 2009, 2008:a-b, 2007, 2005:a-b).

El-Khoury et al (1993) obtained an upper boundhleriumber of extremes of the step-response okfarligystem
with real distinct poles, complementing the exigtrasults for lower bounds (Widder, 1934). Theseilte contribute to
the fact that zeros located between the dominalet nad the pole faster can cause extreme. RacB@bjlpresents a
sufficient condition for extrema of the step-respanProved that every real zero related to a rela and that this
relation, the zero is located to the left of thidepdoes not contribute to the extreme step-regpdiewart, J. (2006)
examines overshoot and reverse reaction assodidiedon-minimum phase zeros.

In Reis (2001, 2002, 2003, 2004, 2004-a) are ptedenecessary and sufficient condition for the texise of
extremes, overshoot and undershoot in the stemmespof second order continuous time transfer fonstand same
class the control systems of the third order, baseds real poles and zeros. This works resuksribws necessary
condition and sufficient condition for the existenaf extremes in the continuous-time systenm ofder with distinct
real poles and distinct or multiply real zeros €Re2010:a-e, 2009, 2008:a-b, 2007, 2005:a-b; SR@8). These
results are extensions of the works the El-Kheoatralii (1993) and Rachid (1995). These conditions petonévoid
when the zeros located between the dominant amelsfgsole not cause extreme in the step-responseprdved that
negative real zeros also cause undershoot in #@response. It is important because in literaturdershooting
phenomenon is association a positive zeros.

These results are important but they cannot ofiesraplete relation between the relative locatiohthe poles and
zeros of the plant and controllers and the exigteof extremes (overshoot and undershoot). For ebegntpe
determination of the exact number of extremes resnan open problem (El-Khoury, 1993). In the opinaf the
authors, this note provides new insight about tbeetation between poles and zeros of a scalariraamis-time
transfer function and the nature of the extremesrghoot and undershoot in its step-response. Titessdts do not
constitute the final understanding of this conrmttibut they certainly complement, clarify and engbahe various
points, which have been subject of recent discussidhe literatureFurthermore the results presented can have many
control engineering applications, especially in teolfer synthesis. In fact, they can be used toigies controller
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ensuring no overshoot and undershoot for the closmul step-response for a linear minimum-phaseesygRachid,
1995).

The paper is organized as follows. Section 2 ¢ostdefinitions and background material. In Sect®main
results, which qualitatively correlate real zeras @xtremes are presented. Applications are presgéntthe Section 4
and concluding remarks are given in Section 5.

2. PRELIMINARES

In this paper consider a SISO linear control stabl&inuous-time system with n real distinct paesk; multiply
real zeros characterized by their continuous-titrietly proper transfer functio(s):

k .
Nis-z)
G(s)= (-1 MK IEL—— @
! (s-4))
j=1
with:
n
K nA4j
" m=3Yr <n, k= kJ=1 A <A< <Ay <0,8<..< 7 ez #Aj;
i=1 S
M(z)
i=1
= z, i=1, .. karereal zeros of th&(s), < ...< Zy,

* A,j=1,.,n arereal poles of th&(s)e z # A; ;

It is convenient to classify the zeros®fs)in four different sets:

M1 ={z:G(z)= 0,0< z <+oo}, Mo ={z:G(z)=O, A<z <O}, M3 ={z:G(z)=0, M<z </In},

Mg ={z:G(2)=0,-c0< z <1}. 2)

In addition, letm,for i = 1, 2, 3, 4 denotes the number of zeros belonging to a dag&sMi, such tham = m+ mz
+ ms+ ma. A pole bracket is the open intervdlA i1, A i) between two distinct consecutive polési< Aiof G(s) Let
p be the number of poles brackets containing an odd number of zeros@(s) (EI-Khoury et alii, 1993)and let integer
n 2 0 be thetotal number of local extreme of y(t), for t > 0.

The following lemma gives a unit step-responsetfar system (1). The proof of this lemma followsnfrahe
expansion in partial fraction of th&(s).

Lema 2.1: The unit step-response of the class linear cosfrstem with G(s) as in (1) is given by:

y(t)=1+ Elcje”i‘ 3)
J:

where fork =2, ..., n:

. nA n_ -4).
S e Y ®
N = i<jen |
i=1
n
N4 ]s.<|'|.<n(”i -4)
!: K _I_ IS
- C|<=(-1)m+k—li¢k Mk -2 I:-l—ik(m ©)
_I'Il(Zi)ri = wi<jen
i=

The problem to find a lower boung for the number of step-response extrema was sdiyatfidder (1934) and an
upper bound by El-Khouret alii (1993). In the end, was considered a SISO lineatrobstable continuous-time
system withn real distinct poles anth real distinct zeros without poles at the origintleé complex plane. Rachid
(1995) contributed with sufficient condition foretlabsence of extremes. These results are predezited

Theorem 2.2: (Lower-bounding theoremjy + m, < 7.
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Theorem 2.3: (General bounding theorem).

() Mm+msnsm+m+mg—p;

(i) parityn =parity(m, + m,) = parity(m, + m, + mz — p), whereparity (x) = 0if x odd andparity (x) = 1if x even,x
be an integer

Theorem 2.4: (Rachid, 1995 The step-response of system (1) has no extremumn>db if there exists a relatioR
satisfying the following conditions:

(iYzRA = z<

(ii)Each polel is related byR to (1) zeros, and;

(iii) Each finite or infinite zera is related byR to(z) poles,

Wherez is a zero (finite or infinite)] is a pole of G(s) and( ) denotes the order of multiplicity 6.

In this article, it wos considered the analysisegfremes in the step-response of system (1), witerzeros are
located in the clashkl,, ie, between the dominante and farthest pole.gta is to provide extensions of the theorems
2.3 and 2.5 and results in Reis (2010: e).

3. MAIN RESULTS

The theorems presented below, provide a necessadjtion for zeros of cladsl; cause extremes in step-response,
and a sufficient condition for the absence of extieln this sense, they are extensions of the ¢ne®2.3 and 2.5, as
well as a generalization of the results presenmteReis (2010: e), and have considered a SISO liceatrol stable
continuous-time system with n real distinct poled i, real distinct zeros.

Theorem 3.1: Let a SISO linear control stable continuous-timstasn with n real distinct poles atg multiply real
zeros characterized by their continuous-time $grigtoper transfer functio®(s) (5)and step-response (6) — (8)mif=

kil Apq -z )"

mz and zeros of the cladé; cause extremes in step-response thg % > 1.
Al —z
1= n 1

Kl Anoq =z "
Theorem 3.2: Under assumptions of the theorem 3.1if= m; and [] (MJ < 1, thenzeros in class does
i n =7

not contribute to extremes in response to unit.step
An-1+4n
Corollary 3.1: If m=myandz 7| A1, Ea— i =1, ..., mtheny(t) has no extreme.

Observation:

(a) The theorem 3.1 gives a necessary conditiorzdoos of clasd/l; cause extremes in step-response. Theorem 3.2
provides a sufficient condition for the absencexifemes.

(b) The theorem 3.2 is an extension of theoremIB.fact, if theny zeros of the clagddl; are related to they poles as

kl A1 —Z
in Theorem 2.4, ther] (LZ'

fi
j < 1 since there are at least -1 zerosto the left of the pold,.;. Therefore
n =7

y(t) does not show the extremes by theorem 3.2;

For prove the theorems 3.1 and 3.2 it is convertiembake the following analysis. It follows fromettemma 2.1
that:

YOy, &S i-a) (6)

¢ et j=2 ¢y

In the equation (6), define:

ci(l):ci/li,forizl, N, (7)
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d](l)z‘—1 e/l(jl)=/lj—/ll,forj=2,...,n @)
(D
t (1)
After the substitution of (7) and (8), it followsat L =14 3 gD [AJ' ]t .
Aqt 2 di~'e
G D&le j=2
Define the follow functiorfy(t):
()
fy(t)=1+ ¥ dj(l)e(/]' )t- 9)
j=2
The equations (6) — (9) follows that:
y(t) _ . (10)
= f(t)
C:(ll)eAlt 1
The relation (10), it follows that the critical p$ ofy (t) are pointdoin [0, +°°) for thatf;(to) = 0. To analyze the
number of real roots of the functidsit follows the equation (9) that:
fi(t) _ (11)
= fo(t
*(7(2) A 2(t)
C2 e
where:
A2)
fo(t)=1+ 3 dﬁz)e[ I ]t (12)
j=3
(2 =aWa® fori=2, .0, (13)
(2)
()25 " o 422,00 2
dJ 2 e/lJ /lj /12 ,j=3,..,n (14)
2
Follow of the (11) that the critical points faft) are roots of the functiofa(t). Continuing with this process, we get:
(k)
fr(t)=1+ g d(k)e(/]' Jt J2<s ksn-1 (15)
j:k+l J
c}k) :dgk_l)/i(]k_l), forj=2, ..., n, (16)
(k)
()2 k) 2 jk-1) k) o
d] ) /IJ /IJ A 7 i=3.n, a7)
Ck
f(t) = flé—l(kt_)1 , k=2,...,n1 (18)
clgk)e/]k t
From equation (18), it follows that the criticalipts of the functiorf,_; (t) are the roots of the functidip(t) for all k =
2, ..., n -1 Note that itk = n - 1, equations (15) and (18) are written as:
frog(t)=1+ dgn_l)e(/]n_/]n—l)t e (19)
fao(t) . (20)

fa—a(t)=
n-2
(n=1) An-1
Chp € n

Follow then, the following results related to fupatf,, 4(t) in (19).
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kq —z "
Lemma 3.1: The functiorf,, (t) has a root if0, + =) if and only if [] (/]/r]‘_l—z'j > 1.
i n =7

d (n-2) )|(”‘2)

Idea of proof of lemma 3.1: The functionf,; (t) has a root i0, + ®) = __r(:_lzﬁn%y >1.Now, expressions
dy 7 Ay
(13), (14), (16) and (17), it follows that:
(-2) ,(n-2) (n-3) (n-2) . "
_dnt” A 9 Ana—Ang Ana | _|alt, [Wna M)kl gz )"
= |'| —
i=]\ An~Z

dnin—zi /]inn—zj = dr(1n_3) Ay = s Ann—Z)‘ _dnl) n-3

and then follows the proof of lemma 3.1.

Corollary 3.2: The functionf,_; (t) has a rooin (0, + o) if:

An-1+1n

(a)m=ml+m2+m3andziﬂ( ,+oojD|or;

(b) m = ny andz D(w,/lnj i or;

kg
(c)m:rrg,zﬂ(/ll,/]n)ﬂandﬂ( >1or;

r
An-1-7 )
An =z

kl An1 —Z
(d) m=my+m, z/(-0,A,) and [] (;1—2' > 1,
i= n~Z

As consequences of lemma 3.1 e corollary 3.2, iotlee following theorems:
Theorem 3.3: Let a SISO linear control stable continuous-timstasn withn real distinct poles ank, multiply real

zeros characterized by their continuous-time $rjmtoper transfer functio®(s) (5)and step-response (6) — (8). Then:
(1) y(t) has no extremum if;

Ao+
a) m=msandzﬂ(ﬂl,%j,ﬂ:1,...,m;
Ao+ A
b) m=rns+m4andzﬂ(—oo,%),ﬂ:1, o m.

Ap=1 +1
(2) If m = myandz D(% , /ln] Ji=1, ..., m,the number of the extremes thg) will be less thanmg if m =
mg is even or will be less thang - 1if m = nyis odd.

Proof: Appendix

Theorem 3.4: If m=m + my + mz + myandz [/ (@ +oo] Oz OMy [OM, [J Mg, then the number of the

extremes thg(t) will be less thamy, + m, + m; if mg is even or will be less than, + m, + mz - 1if mg is odd

Proof: Appendix

As consequences of theorems 3.3 and 3.4, follovioll@ving observations:
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(&) The theorem 3.3 shows a class of zeros that ddesontribute to extremes in response to step aridhadre not
covered in the classes given by theorem 2.4. ldbinse, they are extensions of theorem 2.4. intfecitems (1)

. /1n_1 +An .
- a) and b), ifm = my 1, them; — 1 zerosz such asz /7 An_l,T Li=1, .., m-1 do not
contribute to the extreme step response and ifim@d to any pole. Note that ih = m = 1, apply the theorem

2.4,

(b) Bytheorem 2.3m + my<snp<m+m,+m—p If m=m, =0, then 0/ < mz — p The upper bounds found
for n by theorems 3.3 and 3.4 are exactly the sameahbsé results improve the results provided by #maz.3,
since they specify the locations of the zeros efMj class so that they can contribute or not with tkteeenes of

Ap=1 +1
the response the step. In fact, by theorem3.3,0 if m = mz andz [/ (/11 , %) Oiorifm=m+my

1+ i+
andz D(—oo, %}ﬂ =1, ..., m Moreover, ifz D(% , /ln]Di =1, .., m, then0 s < myif

mg is even or &7 < mg — 1if mgis odd, ie if the zeros of the clalgk are located in this subinterval, thgmrmay
take its maximum value ify ormg — 1

Proof of the theorem 3.1: Suppose that = my and zeros of the cladd; cause extremes in to unit step-response. By

theorem 2.3y(t) has at mosin; — pnon-zero extreme 0, +w). Note that ifp =0, 7= mzand ifp = 1 thennp=m; —

1, coinciding with the upper bounds found in Theoref Erom equation (13), the functid4ft) will have, at mostimg

— p roosts in(0, +«) and signal change. By Theorem 2.1, shows thah fn_m?,(t) = K and fn—ﬁb—l(o)'
t-0"

fn—m\;—z(o), ..., 1(0) are all zero. Hencdy(t) will have, at most; — pnon-zero roots and at mast — pextremesn

(0, + o), with signal changeContinuing with the review processfn_ms_l(t) will have, at mostm; — p non-zero

extremes in(0, + «), with signal changeSince [im fn—nrt;(t) =K, fn—mg,(t) will have, at mostms — proots in(0,
t-0"
+ o), which implies the existence of a maximumg - p - 1extremes, sincK # 0. Continuing with the review process,

kel A1 -z )"
fna(t) will have a roots irf0, + o). By lemma 3.1,[] (Mj > 1, and this proves the theorem 3.1.
i= i

Proof of the theorem 3.2: Suppose by absurd that zeros of the cldlsscause extremes in step-response. This
contradicts the hypothesis, the theorem 3.1.

The results obtained from previous results theofaithg theorems more general, which guarantees lleatdes the
zeros of the clasM,, the zeros of the cladds;, under certain conditions, does not contributeghi® extreme step
response.

An-1+1n

Theorem 35: f m=m + my + mg + my andz D(/ll, >

)DI =1, ..., ;y then zeros of the clasil; do not
cause extremes in step-response and glsom, + m,.

Proof: Follows directly from theorem 3.4, corollary 3.2dahe fact thatm, + m, <7 (theorem 2.2Widder, 1934).

4. SOME APPLICATIONS

4.1. A powerful electro-hydraulic forklift can be ustallift palletized material weighing several torte@platform 35
feet in a construction site (Dorf, 2001). The unjtieedback systems has the open-loop transfetiumc

(s+ 1)2

G(s)=K 2
sls” +1

§20

The closed-loop transfer function is:
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(s+1)?
3

H(s)=K 3
s +Ks® +(2K +1)s+K

(21)

If K=7.5, G(s)has polesl; = -3.8508,4, = -3 and A; = -0.6492and zer@ = -1.By theorem 3.3, &7 <2.Figure 1
shows the graphics of the step-response in thiesys

Resposta a Degrau

Fig. 1. Step-response ifK = 7.5.

4.2 We consider the linear control system given by éqog1), whem = 6 andm = 3for G (s)given:

(o) (%s+1j(§ s+1]2 . (42)

[g s+1j(;1 s+1j(é s+ 1}(% s+ 1}6 s+ 1}(%+1)

G(s) has zerog, = -3, 2 =-2.5and polesl; = -8, 1, = -7, A3=-6, A, =-5, s = -4 edg=-05.Asm =m = 3, by

theorems 3.1, 3.4 and corollary 3i() has not extremes foﬁ j57‘z|

i=11%6 ~ 4
response in this system. Shifting the zerand putting it ire, = - 0.8 (figure 2 - (a): '+') and then moving both zerps
andz, putting them at; = z, = -1 and- 0.8 (figure 2 - (b):"."), by theorems 3.1 and 3;3f) has at most two extremes.
Note thatG (s)does not satisfy the theorem 2.4. It is obserhatl s you approach the zeros of the pigle -0.5, the
overshoot significantly increases the value of fimectiony (t) at the minimum becomes negative. This can be seen
making the shifting of; andz, putting them at; = -0.6 andz, = - 0.5235.Figure 2 - (b) shows this effect.

<1. Figure 2 shows the graphics of the step-

Resposta a Degrau Resposta a Degrau

¥i5)

Tempo (5) Tempo (3]
Fig. 2 - (@): (.) - (+): Step-response. Fig. 2 - (b) Undershoot and overshoot.

This shows that the occurrence of reverse reac@nalso occur, though the zeros are located icdtegoryMa.
This fact is important since, in literature theeese reaction is associated only with positive ero
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4.3 Consider a SISO linear control stable continueue-tsystem characterized by their continuous-titrietly proper
transfer functiorG(s):

o (Ts+y) . (24)
(s+ 1{%s+ 1][%s+ 1][1—105+ 1]

The control of fuel a car uses a diesel pump thaubject to variation of parameters (Dorf, 20@)ch a system with
unit negative feedback controller, has a proces®itdrol, considering (24), whéin=2 / 3 Thus,z = -1.5andz /7M.
By theorem 2.4 the step-response has not extrefigage 3 — (a) shows the graphics of the step-mesgpoEffecting a
shift in z, approaching the origin, the system changes is\der dramatically. Moreover, changing the multijy of
z, together with the shift to the right, the effexthe increased number of extreme in the steporese. IfT = 12/10e k
=80, T = 10ek = 80.000and the multiplicity ozis m = 3,the continuous-time strictly proper transfer fuangg(s)
are:

G(s)=

1 3
(E St 1) and (10s+1)° : (25)

G(s)=
(s+1)(£s+1j(gs+lj(is+lj (s+1)(is+1)[}s+1][is+1]
2 4 10 2 4 10

If T=12/10ek =80,by theorem 3.3p =2 If T =10ek = 80.000 by theorem 3.4y =3 (Figure 3: (a) - (b) shows
the graphics of the step-response in this systems).

G(s)=

Resposta a Degrau Resposta a Degrau
? : : 1 : : ‘ : 300

3000 -
2500
2000
1500
-------- R e e e e Il

a00

i i i i i i i -500
- R e e

-1000

i i i i i i | gy i i i i i i |
U u]

i 05 1 15 2 25 3 35 4 0s 1 15 2 24 3 3E 4
Termpao () Tempo ()
(@) : T=12/10 ek =80. (B)= 10 ek = 80.000.

Figure 3: Step-response offi(s) (25).

Figure 3: (b) shows the occurrence of overshoat amdershoot. This fact is important since, inréitare the
reverse reaction is associated only with posite®g.

5. CONCLUSION

In this paper presented a study of the number &mes that can occur in step-response in lineatraosystems
stable and continuous time, with real distinct paad real multiple zeros. It wos proved that ther specific region
on the line for the location of zeros between thke mearest and farthest from the origin, so theyot contribute to
the extreme in the step-response, ie, beyond tlos oé the clasM,, the zeros of the Cladd; under certain conditions,
does not contribute to extremes.

The results presented are necessary conditionsudficient conditions that complement the resufttheorems 2.3
and 2.4 on the relative positions of poles and g&oozeros or not contribute to the extreme in dtep-response,
consisting of extensions of these theorems. ingbise, the theorems 3.3 and 3.4 presented aoflassos which does
not contribute to the extreme step response ambtiscovered in the classes given by theorem 2w#hdtmore,
although the upper bounds found fprby theorems 3.3 and 3.4 are exactly the samethlese results improve the
results provided by theorem 2.3, since they spehbifylocations of the zeros of thg class so that they can contribute
or not with the extremes of the response the step.
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The authors also presented a class of linear dostable continuous time system and minimum phhaeexhibits
overshoot and undershoot in the step responseadtsivown that the reverse reaction can also otteurgh the zeros
are located in the classsMThis fact is important since, in literature tlee@rse reaction is associated only with positive
zeros.

In the authors opinion, this note provides newghsiabout the correlation between poles and zefas stalar
continuous-time transfer function and the naturéhefextremes in its step-response. These result®tconstitute the
final understanding of this connection, but theytaiely complement, clarify and expand the varigugsnts, which
have been subject of recent discussion in theatitee. Furthermore the results presented can hamey roontrol
engineering applications, especially in controfignthesis. In fact, they can be used to desigméalter ensuring no
overshoot and undershoot for the closed-loop stepanse for a linear minimum-phase system (Ra&Bieb).
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APPENDI X
. ky /1n_1 +/]n
Idea of proof of theorem 3.3: Supposenis evenm =m; = > r; andz J -5 An |.4. By corollary 3.2
i=1
shows that the possible ways the grapf.gt) are given in Figure 4, below
A
4 fra(t) ) . o
fra(t) f..1(t) has a root with sign changenf; is even and a ro
£.40) fra() no sign change if; is odd. Hence, from eq. (18),,(t) to
Nl have a critical point at, in (0,+), which is an asolute
—> minimum point formg even or an inflection point ifr; is
\ to t t odd. Note thaf,,(0) > 0 or f,»(0) < 0 and ifmg is even
fort [J(ty, +00), frat) - + oo

(a)mg even (b% odd
Figure 4: The graph &f(t).

Thusf,.,(t) has at most two roots with signal chang€0n«), which impliesf, (t) has at most two critical points with
signal change, and at most three roots with sigmges. ifims is odd,f, ,(t) is decreasing irf0,+) andf,,(t) — -co.
Therefore f,(t) has at most one root with sign changgdn+o), thenf,s(t) has at most one critical point with sign
change and, at most, 2 roots with sign changestit@ong with this analysis, to proof thatrik is evenf, 4(t) has a root

with sign change iff,o(t) has at most two roots with signal change fn—m;(t) has at mosin; roots with signal

change. From this function, like all others varaslthe origin, they will at mosty, roots with sign changes. Hendgt)
has at most rootsy roots in(0,+ ) with sign changesTherefore, by (10)y(t) will be at mostm; extreme in0,+ ) if

1+ .
z 5[—“ 12 n ,/ln],DI. Similarly, if mg is odd,fy(t) will be, at mostm; -1 roots in(0,+9) with sign change, which
. . . . /]n_l +/]n .
proves item (2) of theorem 3.3. For proof of iteth Gimply note that i /7| A, E— JLi=1, .., morifm=

Ap=1 +4
mg + myandz 7 (—oo, %} by lemma 3.1 the functidfiy((t) has no root irf0, +=) and then, consequently, the

equations (20), (18), (11) and (10) we have tt{Btdoes not possess extremegdn+c). The proof fom odd is done
similarly.

. Ap—1 +A
I dea of proof of the theorem 3.4: Supposen is evenm = my, + m, + mg + my andz 7 (% , +oo] Lz OMy [T

M, /7 Ms. By corollary 3.2f,.1(t) has one roots ifD, +=). From equations (10) - (19) is proved similarly e proof of
theorem 3.3 thdft(t) will have at mosty + m, + mz roots in(0, +) with sign change, ifng is even or have at mosy
+ m, + mg -1 roots in(0, +o) with sign changéf mg is odd.From equation (10)(t) will have at mostn; + m, + mg

. (Ap=1 +1 , ) o .
extrema m(% , +ooj is mg is even or have at most, + m, + mg -1 extremes isrg is odd which proves the

theorem 3.4.



