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Abstract. This work presents a three-dimensional numerical solution for the diffusion equation in transient state, in an 

arbitrary domain. To this end, the diffusion equation was discretized using the finite volume method with a fully 

implicit formulation and generalized coordinates, for the equilibrium boundary condition. For each time step, the 

system of equations obtained for a given structured mesh was solved by the Gauss-Seidel method. The computational 

code was developed in FORTRAN, using the CFV 6.6.0 studio, in a Windows Vista platform. The proposed solution 

was validated using analytical and numerical solutions of diffusion equation for two geometries. The geometries tested 

enabled to validate both orthogonal and non-orthogonal meshes. The analysis and comparison of the results showed 

that the proposed solution provides correct results for all cases investigated. 

 

Keywords: generalized coordinates, arbitrary geometry, numerical simulation. 

 

1. INTRODUCTION  

 

Diffusion is one of the transportation mechanisms in which the transfer of matter or energy occurs by molecular 

motion due to the existence of a concentration gradient of a substance or temperature, whereas the medium remains 

stationary. This process is represented by the diffusion equation, derived from the general equation of transport, which, 

depending on the problem may be called of Fick’s Law or Fourier’s Law. 

Several physical phenomena use the diffusion theory with the aim of describing the transport of matter and energy in 

a medium. Most notably, we can mention the heating, cooling and freezing of products, as well as the drying process of 

porous materials. By looking at the literature, one can find several analytical and/or numerical solutions of the diffusion 

equation for various geometries and boundary conditions, treating the diffusion coefficients as constants or variables 

(Luikov; 1968; Crank, 1992; Lima, 1999; Silva et al., 2007; Hacihafizoğlu et al., 2008; Silva et. al., 2008; Silva, 2010; 

Silva et al., 2010). 

The solution of the diffusion equation in various physical situations of interest, often requires the need to establish 

certain assumptions in describing the physical process. One of them is related to the geometry of the body in which 

occurs the transport of matter or energy. Several studies have been reported in literature using the diffusive model to 

describe the physical process, and consider the geometric shape of the bodies as cylinders, spheres or infinite slab 

(Silva, 2010; Chemkhi and Zagrouba, 2005; Saykova et al., 2009). For these simpler geometries, the diffusion equation 

can be solved analytically, and often constant thermophysical properties for the medium is assumed (Crank, 1992; 

Amendola and Queiroz, 2007; Saykova et al., 2009). These geometric simplifications also facilitate the numerical 

solution of the diffusion equation (Ukrainczyk, 2009). However, although this procedure usually presents good results, 

sometimes it does not adequately describe the processes involved, if the geometric shape of the solid under study is too 

different from the one considered. 

One can also find in the literature, several applications of the diffusion model to bodies with other shapes, such as 

oblate and prolate spheroidal solids, (Lima 1999, Lima and Nebra, 2000, Li et al. 2004; Hacihafizoğlu et al. 2008; Melo 

et al. 2008; Carmo and Lima, 2008). 

When it comes to solving the diffusion equation written in Cartesian coordinates for 3D geometries, one can cite 

Nascimento (2002), who presented various mathematical models to solve problems of transient diffusion, but for a 

specific geometry: solids in the shape of a parallelepiped. Other studies using Cartesian coordinates to solve the 3D 

diffusion equation can be found in the literature (Cadé et al., 2005, Nascimento et al., 2006; Saykova et al., 2009). 
One can also find reported in the literature some studies that take into account the arbitrary geometry of bodies, and 

thus make use of generalized coordinates for solving numerically the diffusion equation by means of two-dimensional 

models. Among them, one can highlight the work of Salinas et al. (2004), Silva (2007); Silva et al. (2007);Silva et al. 

(2008); Silva et al. (2009); Silva et al (2010). Wu et al. (2004) proposed a three-dimensional numerical solution for an 

ellipsoid, and in this solution constant thermo-physical parameters were assumed, as well as an orthogonal structured 

grid. 
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Therefore, one can observe that there is abundant literature available on diffusion models in general. However, there 

is a lack of studies that take into account the arbitrary geometry of bodies though three-dimensional models, which is 

necessary in order to describe more precisely the process when the bodies under study show a complex geometric 

shape. 

This paper proposes to model and present the numerical solution of three-dimensional diffusion equation written in 

generalized coordinates, using structured meshes and using the method of the finite volumes for a fully implicit 

formulation. The model should consider the arbitrary geometry of the bodies and provide a boundary condition of first 

kind. It should also consider constant, the transport parameters, as well as the dimensions of the solid. In order to 

numerically solve the diffusion equation, a computer code in Fortran language has been developed. 

 

2. MATERIAL AND METHODS 

 

2.1. Diffusion equation 

 

The diffusion equation in Cartesian coordinates is given by (Bird, 2001; Maliska, 2004): 
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where t is the time, x, y and z are the Cartesian coordinates of position, λ  and 
ΦΓ  are transport coefficients, S is a 

source term and Φ  is the dependent variable to be determined. Equation (1) is frequently named diffusion equation of 

the physical domain, in contrast to the transformed domain. 

In general, Cartesian coordinates are not appropriate to solve diffusion problems for solids of arbitrary shape. Thus, 

a coordinate system whose axes coincide with the borders of the control volumes of the studied solid will be used. This 

means that the new axes, denoted by ξ, η and γ, defining a curvilinear, non-orthogonal coordinates system must be used 

(Boas, 1983; Patankar, 1980; Maliska, 2004; Silva, 2007).  

The curvilinear coordinates can be expressed as functions of x, y and z through mutual transformations of the type 

 

. and  γ(x,y,z)γη(x,y,z)ηξ(x,y,z); ξ             (2) 

 

Then, the diffusion equation can be written in the new coordinate system as (Maliska, 2004; Wu et al., 2004): 
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where τ is the time in transformed domain and the coefficients αijare given by expressions:  

;)(
1  222

211 zyx ξξξ
J

α 

 

;)(
1

2
2112  zzyyxx ηξηξηξ

J
αα 

 

);(
1

23223 zzyyxx γηγηγη
J

αα 

 

 ;ηηη
J

α zyx )(
1 222

222 

 

)γξγξγξ(
1

αα zzyyxx23113 
J  

 )(
1 222

233  ;γγγ
J

α zyx 

           

(4a-f) 

 

On the other hand, J is the Jacobian of the transformation and is defined by the determinant: 
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Equation (3) is often called the diffusion equation in the transformed domain. 
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2.2 Numerical Solution: discretization of the diffusion equation 

 

The method used in the discretization of the diffusion equation is the finite volume method with a fully implicit 

formulation. The reason for this choice is that the solution becomes unconditionally stable for any time interval 

(Maliska, 2004). 

Integrating Eq. (3) about space Δξ Δη Δγ  and time ( Δτ ) we obtain the following result: 
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where the superscript 0 means “former time” and its absence means “current time”. The subscripts “e”, “w”, “n”, “s”, 

“f” and “b” mean the east, west, north, south, front and back borders, respectively, of an elementary generating cell of a 

control volume, while P is the nodal point of this volume. All the elements described above are shown in Fig. 1. 

 

 

Figure 1: Control volume with a nodal point P and the faces “e”, “w”, “n”, “s”, “f” e “b”. 

In order to complete the discretization of Eq. (6), it should be noted that for a three-dimensional non-orthogonal 

structured mesh created to represent a solid with any geometry, there are 27 different types of control volumes in the 

transformed domain, as shown in Fig. 2. Obviously, each control volume shown in Fig. 2 generates an algebraic 

equation distinct from the discretization of Eq. (6). 

 

 
Figure 2: Regions with 27 different types of control volumes in the transformed domain for a three- dimensional 

structured mesh. 
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The discretization of Eq. (6) for the internal control volumes (Fig. 1) results in the following equations for the direct 

derivatives of the variable Φ: 
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The expressions for the cross derivatives are defined as follows: 
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The resulting algebraic equation for the volumes of internal control is given by: 
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where some coefficients are given by: 
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Often, the lines ξ, η and γ of a mesh in the transformed domain are identified by consecutive integers, and thus Δξ, 

Δη and Δγ are equal to unity in all equations as they appear. 

 

3.2 Metrics on nodal points and faces of control volumes 

 

The determination of the terms αij and the Jacobian J requires the knowledge of the metrics of the transformation, 

since they are calculated from the inverse metric, which in turn should be determined by the partial derived  xξ, xη, xγ, yξ, 

yη, yγ, zξ , zη  and zγ. That way, should be established expressions for these derived for both the nodal point P as for all the 

faces of control volumes. Thus, for a nodal point P of an internal control volume of a mesh, the direct derivative of the 

coordinates x with respect to ξ, η and γ are given by the following expressions:  
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where xe, xw, xn, xs, xf and xb are the coordinates of the midpoints of the faces “e”, “w”, “n”, “s”, “f” e “b”, respectively, 

and are calculated as the arithmetic mean of the four vertices that form the quadrilateral face. The derivatives related to 

the coordinates y and z are obtained following the same steps above. 

On the borders of each control volume, for example, “e” (between control volumes P and E), the following 

expression should be used to determine the derivatives of the coordinates x with respect to ξ, η and γ: 
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where EP x  x   and  are the coordinates of the nodal point P and its east side borderer (E), which can be calculated by 

the arithmetic average of the eight vertices of the parallelepiped representing the volume control. Similar expressions 

can be found for the derivatives related to the other coordinates. In a similar analysis, we obtain the derivatives on the 

other sides as well as the coordinates of nodal points located in the neighboring control volumes. 

With a similar procedure as that presented above for the internal control volumes of a mesh, algebraic equations can 

also be determined for each control volume located in the boundaries of the mesh defined by the solid in study. As 

example, for the convective boundary condition, the discretization of the diffusion equation will be presented for a 

control volume located in the west boundary, shown in the fragment of mesh in the transformed domain, in Fig. 3. It can 

be observed that this control volume has no neighbor on the west side. 

 

                                                  

Figure 3: (a) Control volume P located on the west side border of the transformed domain; (b) side view of the west 

border. 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  

 

The derivatives that differ from those determined for the internal control volumes are dependent on the western 

boundary and can be written as: 
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Replacing the derivatives mentioned in equation above in Eq. (6), one can find the following algebraic equation for 

the control volumes located on the west side of the inner grip: 
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BΦAΦAΦA BSbsBNbnFSfs            (14) 

 

Some of the terms that differ from those determined for the internal volumes are given by: 
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With a procedure similar to that presented to the internal control volumes, one can also determine the metrics for the 

control volume located on the inner face of the western border and algebraic equations similar to the above can be 

found for each control volume located on the boundary of the solid. 

Once determined the values of Φ for each control volume, an instant t, the average value of the variable at this 

moment can be determined by the expression given below, with appropriate discretization: 
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The computer code proposed in this paper was developed in the Windows Vista platform through the use of the 

Compaq Visual Fortran studio, version 6.6.0 Professional Edition, using the programming QuickWin Application, and 

for its validation, simulations were performed for which a numerical or analytical solution is known. 

3 RESULTS AND DISCUSSION 

Many tests were performed in order to validate the proposed numerical model and results are available in Farias 

(2010). In this paper we present a simulation aimed at validating the proposed code using analytical solutions 

(parallelepiped) and a simulation to validate the code through numerical solutions. 

3.1 Validation of the numerical solution proposed through analytical solutions 

In this test, we assumed a constant and equal value to the unit for λ, a uniform initial distribution to Φ (Φi = 0.2381) 

was assumed and the transport coefficients as well as the dimensions of the solid were considered constant. Moreover, 

the same magnitude equilibrium value was assumed on all sides of the solid (Φeq = 0.0133) and simulated for the 

effective diffusivity, the value of Г
Φ
 = 6.93931 x10

-10
 m

2
 s

-1
 

The scheme simulating a parallelepiped with dimensions L1 = 6.02 x10
-3

 m, L2 = 46.16 x10
-3

 m and L3 = 86.74x10
-3

 

m, is shown in Figure 4. 

 

             (a)              (b) 

 

Figure 4: Parallelepiped (not on scale) used to validate the numerical solution proposed for the three-

dimensional diffusion equation via analytical solution (a) physical domain (b) computational domain. 

 

In the numerical solution, the domain transformed involved a mesh with 18 ξ lines, 22 η lines, 26 γ lines and 2000 

time steps for a range of Δt = 0.2725 min. The results from the analytical solution were obtained with the “Prescribed 

Adsorption-Desorption” software (http://zeus.df.ufcg.edu.br/labfit/Prescribed.htm). Using the LAB Fit Curve Fitting 

Software V 7.2.46, available at www.labfit.net, the graphs of the obtained solutions were generated in the same system 

of axes and are shown in Figure 5. 

 

 
Figure 5: Superposition of the solutions obtained via the proposed numerical method and analytical method to the 

average value of the magnitude in a parallelepiped with prescribed boundary condition. 

 

Through an observation of Figure 5, becomes visible that there is good conformity between the results obtained by 

both methods, since no distinction is observed between the curves. Therefore, it is possible to point out that the 

developed computer code is valid to calculate the average value of the magnitude. 

 

3.2 Validation of the numerical solution proposed through numerical solutions 

 

In order to validate the numerical solution proposed through numerical solutions, the simulation carried out involved 

consistency tests exploring symmetry conditions, temporal evolution of the spatial distribution and analysis of transient 

regimen of the magnitude in an arbitrarily chosen control volume. 

The geometric figure used for the study of non-orthogonal meshes was of a solid obtained from extrusion along the z 

axis, a diamond in the xy plane, with the largest diagonal measuring twice the smallest diagonal. Figure 6 illustrates the 
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geometric situation treated highlighting the two-dimensional mesh which originated the solid, as well as the axes of the 

generalized coordinates and the Cartesian coordinates. 

(a)   (b) 

 

Figure 6: Solid (not on scale) used in the validation of computational code proposed for non-orthogonal meshs 

(a) two-dimensional mesh that generated the solid; (b) solid generated by the extrusion of a diamond. 

 

The physical parameters and the initial and shape conditions are summarized in Table 1. 

 

Table 1: Physical parameters used to solve the diffusion equation in a non-orthogonal mesh for the prescribed  

boundary condition: 

 

 

 

 

 

The transformed domain involved a time interval Δt = 0.20 min. for 1000 time steps and a discretized mesh with 33 

ξ lines, 33 η lines and 34 γ lines. In consistency tests for non-orthogonal structured meshs, we analyzed the transient of 

the knots corresponding to the control volume located on the opposite corners of the larger diagonal of the solid`s 

central surface and the superposition of solutions obtained for the two control volumes are shown in Figure 7a. 

Obtaining information about how the moisture level content differs inside and outside of the solid is important because 

these differences generate tensions that can damage the product. Therefore, we analyzed the transients to a boundary 

volume located in one of the corners of the larger diagonal, another one in one of the corners of the smaller diagonal 

and a lower internal control volume. The results are shown in Figure 7b. 

 

      
(a)                                                                                                 (b) 

Figure 7 - (a) Superposition of Φ transients, in a diamond, in the nodal points related to the control volumes located 

on the corners of the larger diagonal of the solid`s central surface. 

(b) Results of Φ transient, obtained with the code proposed for a nodal point located in the middle of the solid, 

another one in the corner of the smaller diagonal, and one more in the corner of the larger diagonal. 

 

Through an inspection of the results presented in Figure 7, it is possible to say that there is consistency in the results 

obtained by the proposed numerical solution for the physical phenomenon of the diffusion process expected for the non-

orthogonal mesh studied. It can be observed that the diffusion occurs faster in the corners of the larger diagonal, being 

slower in the corners of the smaller diagonal and even slower in the control volumes located in the middle of the solid. 

It is also evident that the control volumes located on the edge almost instantly assume the equilibrium value, which is 

consistent with the imposition established by the boundary condition of first kind. 

 Φi Φeq Г
Φ
 (m

2 
s

-1
) d1 (m) d2 (m) Lz (m) 

 1.00 0.10 1.66667x10
-7 

8.00x10
-3 

16.00x10
-3 

100.00x10
-3 
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The Contour Plots software (http://zeus.df.ufcg.edu.br/labfit/Contour.zip) enables the visual analysis of the temporal 

evolution of spatial distribution of the Φ magnitude on a two-dimensional mesh in the physical domain. This option was 

used for the central surface of the solid with the results from the numerical code proposed in this paper. The time 

evolution was followed in several moments and the contour diagrams obtained are shown in Figure 8. 

(a) (b) (c) (d)   

 

Figure 8: Contour plots for the central surface of the solid shown in Figure 6 for the moments: 

a) t = 10 min, b) t = 20 min, c) t = 30 min, d) t = 40 min. 

 

By observing the contour plots shown in Figure 8, it is clear that there is consistency in results, due to the fact that 

the edge assumes the equilibrium value almost instantly, a situation imposed by the balance boundary condition. In 

addition to that, the transportation occurs quite fast on the boundary, gradually diminishing as it moves inwards, until it 

becomes slow in the center of the solid. Therefore, it is clear that the proposed solution is consistent, since the 

symmetry condition exploited was consistent in all situations analyzed. 

The computational code developed was validated through a comparison with the transients produced by the 

Diffusion RE software. Figure 9a shows the results for a control volume located inside the solid, identified by 

(ξ = 16, η = 16, γ = 17). Figure 9b illustrates the temporal evolution of the diffusion process to the average magnitude 

value, considering the volume control located in the central surface of the solid. 

 

    
Figure 9: (a) Φ Transient (a) for a nodal point inside the solid, identified by (ξ = 16, η = 16, γ = 17) 

(b) Transient for the average value of Φ in the central surface of the solid 

4 CONCLUSION 

The theory proposed in this paper for the numerical solution of the diffusion equation applied to solids with three-

dimensional arbitrary geometries using generalized coordinates and making use of equilibrium boundary condition, 

produced results which were consistent with those expected. The comparison of the proposed numerical solution with 

the analytical solution of the diffusion equation for the parallelepiped also showed a consistent result, since there was a 

good conformity between the curves obtained from both solutions. Moreover, in all consistency tests that were 

performed by exploiting symmetry conditions, the results were satisfactory. 

As for the validation of the computer code developed using numerical solutions, the results were consistent for the 

analyzed geometry (solid obtained from the extrusion of a diamond). When a comparison of the proposed solution was 

made with numerical solutions of the diffusion equation obtained with software available in the literature, the solutions 

obtained by both methods coincided in all analyzed situations. 

It can be stated, therefore, that the computer code developed in this work is valid for a boundary condition of first 

kind and can be applied to the study of 3D diffusion phenomenon in solids with any geometry. Some examples of 

possible applications can be brought up, such as the mass transfer, heat conduction, drying of porous solids and cooling 

and freezing of bodies. 
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