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Abstract. The simulation of flow over bodies with complex geometriggyusigh-order approximations is a challenge
in computational fluid dynamics. The immersed interfacehods are becoming increasingly popular since Cartesian
grids can be adopted. Despite obtaining good results, beihlitative and quantitative, most methods rely on low-
order, normally first-order. The aim of the present work isptesent a high-order immersed interface method for the
2-D incompressible Navier-Stokes equations in streamtiimworticity formulation. The time integration is caed out

by a fourth-order explicit Runge-Kutta scheme. Fourthesrdompact finite-differences are used for discretize tlaiab
derivatives. The high formal accuracy at the immersed fate is obtained by corrections to the finite-differencesis.

To validate the method in its application to incompressildess, a uniform flow past a circular cylinder was used as test
case. The results show that higher order can be achievedtedpine correction in the finite-difference stencils.
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1. INTRODUCTION

The Immersed Interface Method (IIM) was first proposed by égive and Li (1994) and it differs from the original
Immersed Boundary Method (Peskin, 1972, 1977, 2002; Retnad, 1999) and from other alternative forms (Goldstein
et al, 1993; Lima E Silvaet al, 2003) by the use of a discrete delta function. LeVeque an(l@94) developed a
second-order method that allows more general interfacditions.

Considering that a particular set of governing partialeti#htial equations apply throughout the entire domain, the
main idea is that the immersed interface represents a giriyuand field variables and/or their derivatives will be-di
continuous across the immersed interface. To deal withdisisontinuity at the interface, the coefficients for theténi
differences are made different and the stencil needs one pwint to obtain the solution. As well, corrections terms,
based on jump conditions, are added on the right-hand side.

A variation of this class of method is the explicit-jump imreed interface method proposed by Wiegmann and Bube
(2000). They made the observation that standard finiterdifiees techniques fail when applied to non-smooth funstion
because underlying Taylor expansions upon which they aedare invalid. In this context, a Taylor expansion inahgdi
jumps is used to provide second-order approximations. eir thethod, the formulas for the discontinuities across the
interface can be written depending only on solutions vaturesne side of the interface.

According to Li and Ito (2006) 1IM is a sharp interface methiodvhich the discontinuities or the jump conditions are
enforced either exactly or approximately. It is crucial fioe [IM to have a prior knowledge of the jump conditions eithe
from physical reasoning or from the governing differenéguations. Only those grid points near or on the interfaces,
which are usually fewer than those regular grid points, regetial attention. Away from the interface, standard finite
difference method is used in the discretization. The sindjalia structure of a fixed and uniform grid makes it easy to
use the method to solve complicated interface problemsne#@honable cost and given accuracy. In their work, while the
global errors have second-order of accuracy at all gridtppthe local truncation errors may be one order lower at grid
points that are near the interface than at regular grid polrat are away from the interface.

The key idea of the IIM is that the finite differences schentah@immersed interface must be corrected in order to
maintain the formal accuracy of the underlying numericaksoe (Linnick and Fasel, 2005). In this paper a fourth-order
[IM is used to solve incompressible flow. The derivative oédtions and the Poisson equation solver are verified tokchec
the accuracy of the IIM. The paper is divided as follows: reedtion shows the formulation adopted; in Section 3 the
numerical method is described; numerical tests are pred@mtSection 4; in Section 5 the results for 2D simulatiors ar
shown; finally conclusions are made in Section 6.

2. FORMULATION
For the numerical solution, the Navier-Stokes equationeweitten in vorticity-stream function formulation. The
vorticity in the spanwise direction, denoted byis:
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whereu andv are the velocities components in the streamwigeapd wall normal {) directions, respectively. The
stream functionp is defined such that:
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The vorticity transport equation can be obtained by appglymotational of the momentum equation is:
a_w — 8_w _ 8_w + i 82_w + 82_w (4)
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wheret is the time and the Reynolds numbér = —U with L the channel height] the max velocity and the dynamic
14

viscosity.
The continuity equation is:
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Using the definitions of stream function Egs. (2) and (3) guulydng them in the vorticity definition Eq. (1) a Poisson-
type equation for the can be derived:
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Equations (2), (3), (4) and (6) were solved numerically lyyshhemes described below.

The solution was marched in time according to the followitgps:

1. Impose initial conditions fou, v, w andy compatible with each other;
. Calculate the vorticity from the vorticity transport edion (4), for timet + dt;

. Calculate) from the Poisson equation (6);

. Calculate velocity from Eq. (2);

2

3

4. Calculatey velocity from Eqg. (3);

5

6. Calculate the vorticity generation at the wall for the nelocity distribution;
7

. Return to the second step until the desired integratina is reached.

3. NUMERICAL METHOD

The numerical method described here is focused in the @ionlof the derivatives in the presence of discontinuities
The 1IM consists in the correction of the derivatives cadtiain by adding jump corrections to the formula. This catitet
is mandatory at the points were the interface crosses theistalopted. The following text explains how to calculate
these corrections that are the soul of this method.

Consideringf a smooth function in the entire domain, except at pointthe Taylor expansion of atx;,; can be

written as

2
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where
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h=zit1 — 2, ht = xip1 — 2o, b~ = 24 — z; and[[f], is the jump off atz,, obtained by

[fl, = lim_f(z)— lim f(z). )
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With these definitions, a compact finite difference appration for the first derivative of can be written as

Ly f 0+ LD + L £ = R fioa + R+ RY fien + (LhJoa — Rboo), (10)
and so, the second derivative ptan similarly be written as

L2 12 4 212 + L ) = R fioa + B2+ B2 fin + (B3 oo — REJao), (11)

whereL? and R} are, respectively, the left-hand side and right-hand sieéficients of the:-th derivative approximation
and.J,,; are the Taylor expansions of the jump gf*) at pointz = z,. This jumps can be computed by the following
equations, depending on the positiongf

|f1‘i<$a<$i+1,I:i+1
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orifr; 1 <wza <z, I =i-—1
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Lw:*U@h+hHﬂWa*LELU®L+L§LU®L*LILUWL+L§LU@L, (15)
_ h)? h)3 h)?
Ln:*Umh+hﬂﬂwa*LELU®L+£§LUWL*QELU@L, (16)
h)? h)3
Lw:*wwh+hﬁﬂwa*LQLUWL+£5LU@L- (17)
The jumps off can be computed by
[F™], = £ - 1™, (18)
where
_(’_n) = Cla+ faJcr + Cli4o fi+2 + Cl;is fi+3 + Clita fi+4 + Cliys fi+5 + Clite fi+6a (19)
Fo = e, fo e ficr o, o ficetea, gficz o, ficat e, g fios, (20)
in the case that; < z, < z;41.
Coefficients:,, to calculate
FS = cofo +cifi + cisr fir1 + Ciyafive + Cirafivs + civafiva (21)
are obtained solving the linear system
11 1 1 1 1 Car 10,0
0 hi hiy1 hito hitz higa ¢ 1651
0 h,z thrl thrQ hz+3 hz+4 Ci+1 _ 2'5712 ’ (22)
0 hji hiJrl hiJrQ hiJrg hi+4 Ci+2 3'5713
0 h’15 hg+1 h?_Q h%+3 hg+4 Ci+3 4'5714
0 h7 hiyn hive hips hiyg Cita 510ps5

whereh; = z; — z, andd,; is the Kronecker’s delta function

(1 =
%{Oim#j (23)
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3.1 Spatial discretization

Three-point fourth-order compact finite difference schemere used to compute numerical approximations to the
spatial derivatives. For the first derivative the schemésisrgby:

-1 1
S fm— saz o1+ g finn + (LiJar = RiJao), (24)
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whereL; = 3 and]i_’j . 2A$ if I =14 . lorLy 3 andR; 5AL if [ =4+ 1.
The second derlvat|ve can be obtained by:
10 1 2 1
f(2) 2f1-(2) f(i)l = As ~— fi-1— Ffi + ?fﬂrl + (L7 Ja2 — R7Jao), (25)
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whereL; = T andR? = A if I=i—1orl=1i+1.

In both schemed,,; can be calculated by Eqg. (12)-(14) or Eq. (15)-(17), depsmdn the value of .
In the next section the derivative calculation and Poisspragon solver are verified when discontinuities are presen
in the domain.

4. NUMERICAL TESTS

This section is divided in two subsections: the first one \oted to derivative calculations and the second one shows
the Poisson equation solutions.

4.1 Derivative calculation

A function f = cos(x) was used to verify the accuracy of the derivative approxmnat The domain considered in
this case was the intervll, 2], with the discontinuity being a circle centerechin= 7 and radius- = 0.6. Inside the
discontinuity the function and its derivatives are set t@bm. In Fig. 1 are presented exact and approximated sotutio
to the calculation of first and second derivatives. The cous lines represent the exact solutions while the daghesl o
represent the approximated solutions.

1
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Figure 1. Exact and approximated solutions for first and séderivatives.

It can be observed that the method was capable to identifdigm®ntinuity and do not smear the solution next the

interface. Tables 1 and 2 show the convergence of the metthibe .., norm, i.e.|| - || = 1I<n%v[fz f(z;)], where

N is the number of points; is the approximated solution at pointand f (z;) is the exact solution at poing;.
The convergence order is given by

 log (i) (26)
o log(2)
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In particular in Tab. 1, the convergence order is higher thgrected.
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Table 1.L., norm and convergence order for first derivative.

Az Il - lloo )
1.2566 x 10~t  6.6127 x 10~ —
6.2831 x 1072 2.0767 x 10~7  4.9929
3.1415 x 1072 6.4977 x 1072  4.9982
2.0943 x 1072 1.0690 x 1079 4.4510

Table 2.L ., norm and convergence order for second derivative.

As a result, one can see that the IIM achieves fourth-ordealtulate the derivatives. Next subsection presents the

Az Il Moo )
1.2566 x 10~1  2.7700 x 10~* —
6.2831 x 1072 1.7416 x 10~°> 3.9914
3.1415 x 1072 1.0901 x 10=¢ 3.9979
2.0943 x 1072 2.1542 x 10~7  3.9989

accuracy of this method in a Poisson equation solver.

4.2 Poisson equation solver

Two cases were considered to verify the accuracy of the ®oieguation solver. The first one is a unidimensional

problem,f... = s, with the same domain used in Section 4.1. In this case, itsed a functiorf = cos(x), with source
terms = — cos(z). The difference between exact and approximated solutiande seen in Fig. 2.

1,5e-08

1le-08 4

Error

5e-09 —

One can note that the error is greater away from the interfBlee convergence order is shown in Tab. 3, where again

fourth-order is achieved.

Figure 2. Error for Poisson equation solver.

Table 3.L ., norm and convergence order for Poisson equation solver.

Az Il lloo )
6.2831 x 1072 1.7616 x 10~8 —
3.1415 x 1072 1.1039 x 1079  3.9962
1.5707 x 1072 6.7536 x 10~11  4.0308
7.8539 x 1073 3.8915 x 10712 4.1172
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The second case is a two-dimensional problgm+ f,,, = s. The domain is a squafe, 2x] x [0, 27| with a cylinder
centered in(w, 7) and with radius- = 0.6. A function f = sin(z) cos(y) was used to verify the accuracy of the Poisson
equation solver, with source tersn= —2 sin(z) cos(y).

The Poisson equation was solved including and not incluthiegcylinder into the domain. The error for both cases
can be seen in Fig. 3. It shows that the presence of the disodgtdoes not increase the error near the interface.

a) b)

Z b4

Figure 3. Error for Poisson equation solver: a) without digmuity; b) with discontinuity.

In the next section are presented the results of a simulafian incompressible flow using the proposed method.
5. RESULTS

The 1IM was applied in the solution of an incompressible flowstream function-vorticity formulation. A classical
fourth-order Runge-Kutta method was used for the time natiégn. The test case is a Poiseuille flow over a cylinder. The
domain is shown in Fig. 4, where= 0.15 is the cylinder radius angl.05, 1.05) is the center of the cylinder.

YA

u @|1-05 2

4.05 11 *

A 4

Figure 4. Domain for a Poiseuille flow over a cylinder.

For this simulation a Reynolds numbBs = 25 was considered. The contour of vorticity near the interieae be
seen in Fig. 5 while the velocity field near the interface caséen in Fig. 6.
This results show that the method could identify the disicmiitty in the domain.

6. CONCLUSIONS

In this paper a fourth-order Immersed Interface Method wsesduo solve incompressible flow. The derivative cal-
culations and the Poisson equation solver were verified éalcthe accuracy of the method. The results show that the
convergence order is not affected by the presence of diseities inside the domain. The method was used in 2D
simulation of a Poiseuille incompressible flow over a cylindThe behavior of the method was qualitative checked by
verification of velocity and vorticity fields. Further inw&gations should be carried on to confirm the method accuracy
2D simulations.
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Figure 6. Velocity vectors and streamlines near the cylinde
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