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Abstract. The simulation of flow over bodies with complex geometries using high-order approximations is a challenge
in computational fluid dynamics. The immersed interface methods are becoming increasingly popular since Cartesian
grids can be adopted. Despite obtaining good results, both qualitative and quantitative, most methods rely on low-
order, normally first-order. The aim of the present work is topresent a high-order immersed interface method for the
2-D incompressible Navier-Stokes equations in stream function-vorticity formulation. The time integration is carried out
by a fourth-order explicit Runge-Kutta scheme. Fourth-order compact finite-differences are used for discretize the spatial
derivatives. The high formal accuracy at the immersed interface is obtained by corrections to the finite-difference stencils.
To validate the method in its application to incompressibleflows, a uniform flow past a circular cylinder was used as test
case. The results show that higher order can be achieved adopting the correction in the finite-difference stencils.

Keywords: high-order immersed interface method, compact finite-differences, incompressible flow.

1. INTRODUCTION

The Immersed Interface Method (IIM) was first proposed by LeVeque and Li (1994) and it differs from the original
Immersed Boundary Method (Peskin, 1972, 1977, 2002; Romaet al., 1999) and from other alternative forms (Goldstein
et al., 1993; Lima E Silvaet al., 2003) by the use of a discrete delta function. LeVeque and Li(1994) developed a
second-order method that allows more general interface conditions.

Considering that a particular set of governing partial differential equations apply throughout the entire domain, the
main idea is that the immersed interface represents a singularity and field variables and/or their derivatives will be dis-
continuous across the immersed interface. To deal with thisdiscontinuity at the interface, the coefficients for the finite
differences are made different and the stencil needs one more point to obtain the solution. As well, corrections terms,
based on jump conditions, are added on the right-hand side.

A variation of this class of method is the explicit-jump immersed interface method proposed by Wiegmann and Bube
(2000). They made the observation that standard finite differences techniques fail when applied to non-smooth functions
because underlying Taylor expansions upon which they are based are invalid. In this context, a Taylor expansion including
jumps is used to provide second-order approximations. In their method, the formulas for the discontinuities across the
interface can be written depending only on solutions valueson one side of the interface.

According to Li and Ito (2006) IIM is a sharp interface methodin which the discontinuities or the jump conditions are
enforced either exactly or approximately. It is crucial forthe IIM to have a prior knowledge of the jump conditions either
from physical reasoning or from the governing differentialequations. Only those grid points near or on the interfaces,
which are usually fewer than those regular grid points, needspecial attention. Away from the interface, standard finite
difference method is used in the discretization. The simpledata structure of a fixed and uniform grid makes it easy to
use the method to solve complicated interface problems withreasonable cost and given accuracy. In their work, while the
global errors have second-order of accuracy at all grid points, the local truncation errors may be one order lower at grid
points that are near the interface than at regular grid points that are away from the interface.

The key idea of the IIM is that the finite differences schemes at the immersed interface must be corrected in order to
maintain the formal accuracy of the underlying numerical scheme (Linnick and Fasel, 2005). In this paper a fourth-order
IIM is used to solve incompressible flow. The derivative calculations and the Poisson equation solver are verified to check
the accuracy of the IIM. The paper is divided as follows: nextsection shows the formulation adopted; in Section 3 the
numerical method is described; numerical tests are presented in Section 4; in Section 5 the results for 2D simulations are
shown; finally conclusions are made in Section 6.

2. FORMULATION

For the numerical solution, the Navier-Stokes equations were written in vorticity-stream function formulation. The
vorticity in the spanwise direction, denoted byω, is:

ω =
∂u

∂y
−
∂v

∂x
, (1)
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whereu andv are the velocities components in the streamwise (x) and wall normal (y) directions, respectively. The
stream functionψ is defined such that:

u =
∂ψ

∂y
, (2)

and

v = −
∂ψ

∂x
. (3)

The vorticity transport equation can be obtained by applying a rotational of the momentum equation is:

∂ω

∂t
= −u

∂ω

∂x
− v

∂ω

∂y
+

1

Re

(

∂2ω

∂x2
+
∂2ω

∂y2

)

, (4)

wheret is the time and the Reynolds numberRe =
LU

ν
, withL the channel height,U the max velocity andν the dynamic

viscosity.
The continuity equation is:

∂u

∂x
+
∂v

∂y
= 0. (5)

Using the definitions of stream function Eqs. (2) and (3) and applying them in the vorticity definition Eq. (1) a Poisson-
type equation for theψ can be derived:

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω. (6)

Equations (2), (3), (4) and (6) were solved numerically by the schemes described below.
The solution was marched in time according to the following steps:

1. Impose initial conditions foru, v, ω andψ compatible with each other;

2. Calculate the vorticity from the vorticity transport equation (4), for timet+ dt;

3. Calculateψ from the Poisson equation (6);

4. Calculatev velocity from Eq. (3);

5. Calculateu velocity from Eq. (2);

6. Calculate the vorticity generation at the wall for the newvelocity distribution;

7. Return to the second step until the desired integration time is reached.

3. NUMERICAL METHOD

The numerical method described here is focused in the calculation of the derivatives in the presence of discontinuities.
The IIM consists in the correction of the derivatives calculation by adding jump corrections to the formula. This correction
is mandatory at the points were the interface crosses the stencil adopted. The following text explains how to calculate
these corrections that are the soul of this method.

Consideringf a smooth function in the entire domain, except at pointxα, the Taylor expansion off at xi+1 can be
written as

f(xi+1) = f(xi) + hf ′(xi) +
h2

2!
f ′′(xi) + . . .+ Jα, (7)

where

Jα = [[f ]]α + h+[[f ′]]α +
(h+)2

2!
[[f ′′]]α + . . . , (8)

h = xi+1 − xi, h+ = xi+1 − xα, h− = xα − xi and[[f ]]α is the jump off atxα, obtained by

[[f ]]α = lim
x→x

+
α

f(x)− lim
x→x

−

α

f(x). (9)
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With these definitions, a compact finite difference approximation for the first derivative off can be written as

L1
i−1f

(1)
i−1 + L1

i f
(1)
i + L1

i+1f
(1)
i+1 = R1

i−1fi−1 +R1
i fi +R1

i+1fi+1 + (L1
IJα1 −R1

IJα0), (10)

and so, the second derivative off can similarly be written as

L2
i−1f

(2)
i−1 + L2

i f
(2)
i + L2

i+1f
(2)
i+1 = R2

i−1fi−1 +R2
i fi +R2

i+1fi+1 + (L2
IJα2 −R2

IJα0), (11)

whereLn
i andRn

i are, respectively, the left-hand side and right-hand side coefficients of then-th derivative approximation
andJαi are the Taylor expansions of the jump off (n) at pointx = xα. This jumps can be computed by the following
equations, depending on the position ofxα.

If xi < xα < xi+1, I = i+ 1

Jα0 = [[f (0)]]α + h+[[f (1)]]α +
(h+)2

2!
[[f (2)]]α +

(h+)3

3!
[[f (3)]]α +

(h+)4

4!
[[f (4)]]α +

(h+)5

5!
[[f (5)]]α, (12)

Jα1 = [[f (1)]]α + h+[[f (2)]]α +
(h+)2

2!
[[f (3)]]α +

(h+)3

3!
[[f (4)]]α +

(h+)4

4!
[[f (5)]]α, (13)

Jα2 = [[f (2)]]α + h+[[f (3)]]α +
(h+)2

2!
[[f (4)]]α +

(h+)3

3!
[[f (5)]]α, (14)

or if xi−1 < xα < xi, I = i− 1

Jα0 = −[[f (0)]]α + h−[[f (1)]]α −
(h−)2

2!
[[f (2)]]α +

(h−)3

3!
[[f (3)]]α −

(h−)4

4!
[[f (4)]]α +

(h−)5

5!
[[f (5)]]α, (15)

Jα1 = −[[f (1)]]α + h−[[f (2)]]α −
(h−)2

2!
[[f (3)]]α +

(h−)3

3!
[[f (4)]]α −

(h−)4

4!
[[f (5)]]α, (16)

Jα2 = −[[f (2)]]α + h−[[f (3)]]α −
(h−)2

2!
[[f (4)]]α +

(h−)3

3!
[[f (5)]]α. (17)

The jumps off can be computed by

[[f (n)]]α = f
(n)
+ − f

(n)
− , (18)

where

f
(n)
+ = c1

α+
f+
α + c1i+2

fi+2 + c1i+3
fi+3 + c1i+4

fi+4 + c1i+5
fi+5 + c1i+6

fi+6, (19)

f
(n)
− = c1

α−
f−
α + c1i−1

fi−1 + c1i−2
fi−2 + c1i−3

fi−3 + c1i−4
fi−4 + c1i−5

fi−5, (20)

in the case thatxi < xα < xi+1.
Coefficientscn to calculate

f (n)
α = cαfα + cifi + ci+1fi+1 + ci+2fi+2 + ci+3fi+3 + ci+4fi+4 (21)

are obtained solving the linear system
















1 1 1 1 1 1
0 hi hi+1 hi+2 hi+3 hi+4

0 h2i h2i+1 h2i+2 h2i+3 h2i+4

0 h3i h3i+1 h3i+2 h3i+3 h3i+4

0 h4i h4i+1 h4i+2 h4i+3 h4i+4

0 h5i h5i+1 h5i+2 h5i+3 h5i+4

































cα
ci
ci+1

ci+2

ci+3

ci+4

















=

















1δn0
1δn1
2!δn2
3!δn3
4!δn4
5!δn5

















, (22)

wherehi = xi − xα andδij is the Kronecker’s delta function

δij =

{

1 if i = j,

0 if i 6= j.
(23)
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3.1 Spatial discretization

Three-point fourth-order compact finite difference schemes were used to compute numerical approximations to the
spatial derivatives. For the first derivative the scheme is given by:

1

3
f
(1)
i−1 +

4

3
f
(1)
i +

1

3
f
(1)
i+1 =

−1

2∆x
fi−1 +

1

2∆x
fi+1 + (L1

IJα1 −R1
IJα0), (24)

whereL1
I =

1

3
andR1

I =
−1

2∆x
if I = i− 1 orL1

I =
1

3
andR1

I =
1

2∆x
if I = i+ 1.

The second derivative can be obtained by:

1

12
f
(2)
i−1 +

10

12
f
(2)
i +

1

12
f
(2)
i+1 =

1

∆x2
fi−1 −

2

∆x2
fi +

1

∆x2
fi+1 + (L2

IJα2 −R2
IJα0), (25)

whereL2
I =

1

12
andR2

I =
1

∆x2
if I = i− 1 or I = i+ 1.

In both schemesJαi can be calculated by Eq. (12)-(14) or Eq. (15)-(17), depending on the value ofI.
In the next section the derivative calculation and Poisson equation solver are verified when discontinuities are present

in the domain.

4. NUMERICAL TESTS

This section is divided in two subsections: the first one is devoted to derivative calculations and the second one shows
the Poisson equation solutions.

4.1 Derivative calculation

A function f = cos(x) was used to verify the accuracy of the derivative approximations. The domain considered in
this case was the interval[0, 2π], with the discontinuity being a circle centered inx = π and radiusr = 0.6. Inside the
discontinuity the function and its derivatives are set to bezero. In Fig. 1 are presented exact and approximated solutions
to the calculation of first and second derivatives. The continuous lines represent the exact solutions while the dashed ones
represent the approximated solutions.
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Figure 1. Exact and approximated solutions for first and second derivatives.

It can be observed that the method was capable to identify thediscontinuity and do not smear the solution next the
interface. Tables 1 and 2 show the convergence of the method in theL∞ norm, i.e.‖ · ‖∞ = max

1≤i≤N
[fi − f(xi)], where

N is the number of points,fi is the approximated solution at pointxi andf(xi) is the exact solution at pointxi.
The convergence order is given by

p =
log

(

‖·‖∞2∆x

‖·‖∞∆x

)

log(2)
. (26)
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In particular in Tab. 1, the convergence order is higher thanexpected.

Table 1.L∞ norm and convergence order for first derivative.

∆x ‖ · ‖∞ p

1.2566× 10−1 6.6127× 10−6 –
6.2831× 10−2 2.0767× 10−7 4.9929
3.1415× 10−2 6.4977× 10−9 4.9982
2.0943× 10−2 1.0690× 10−9 4.4510

Table 2.L∞ norm and convergence order for second derivative.

∆x ‖ · ‖∞ p

1.2566× 10−1 2.7700× 10−4 –
6.2831× 10−2 1.7416× 10−5 3.9914
3.1415× 10−2 1.0901× 10−6 3.9979
2.0943× 10−2 2.1542× 10−7 3.9989

As a result, one can see that the IIM achieves fourth-order tocalculate the derivatives. Next subsection presents the
accuracy of this method in a Poisson equation solver.

4.2 Poisson equation solver

Two cases were considered to verify the accuracy of the Poisson equation solver. The first one is a unidimensional
problem,fxx = s, with the same domain used in Section 4.1. In this case, it wasused a functionf = cos(x), with source
terms = − cos(x). The difference between exact and approximated solutions can be seen in Fig. 2.
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Figure 2. Error for Poisson equation solver.

One can note that the error is greater away from the interface. The convergence order is shown in Tab. 3, where again
fourth-order is achieved.

Table 3.L∞ norm and convergence order for Poisson equation solver.

∆x ‖ · ‖∞ p

6.2831× 10−2 1.7616× 10−8 –
3.1415× 10−2 1.1039× 10−9 3.9962
1.5707× 10−2 6.7536× 10−11 4.0308
7.8539× 10−3 3.8915× 10−12 4.1172
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The second case is a two-dimensional problem,fxx+fyy = s. The domain is a square[0, 2π]× [0, 2π] with a cylinder
centered in(π, π) and with radiusr = 0.6. A functionf = sin(x) cos(y) was used to verify the accuracy of the Poisson
equation solver, with source terms = −2 sin(x) cos(y).

The Poisson equation was solved including and not includingthe cylinder into the domain. The error for both cases
can be seen in Fig. 3. It shows that the presence of the discontinuity does not increase the error near the interface.

a) b)

Figure 3. Error for Poisson equation solver: a) without discontinuity; b) with discontinuity.

In the next section are presented the results of a simulationof an incompressible flow using the proposed method.

5. RESULTS

The IIM was applied in the solution of an incompressible flow in stream function-vorticity formulation. A classical
fourth-order Runge-Kutta method was used for the time integration. The test case is a Poiseuille flow over a cylinder. The
domain is shown in Fig. 4, wherer = 0.15 is the cylinder radius and(4.05, 1.05) is the center of the cylinder.

u

y

x

r

1.05

4.05

2

11

Figure 4. Domain for a Poiseuille flow over a cylinder.

For this simulation a Reynolds numberRe = 25 was considered. The contour of vorticity near the interfacecan be
seen in Fig. 5 while the velocity field near the interface can be seen in Fig. 6.

This results show that the method could identify the discontinuity in the domain.

6. CONCLUSIONS

In this paper a fourth-order Immersed Interface Method was used to solve incompressible flow. The derivative cal-
culations and the Poisson equation solver were verified to check the accuracy of the method. The results show that the
convergence order is not affected by the presence of discontinuities inside the domain. The method was used in 2D
simulation of a Poiseuille incompressible flow over a cylinder. The behavior of the method was qualitative checked by
verification of velocity and vorticity fields. Further investigations should be carried on to confirm the method accuracyin
2D simulations.
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Figure 5. Isovorticity contours near the cylinder.

Figure 6. Velocity vectors and streamlines near the cylinder.
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