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Abstract. The increase in heat transfer rates aiming efficient systisnmne of the goals in convection heat transfer
exchangers. The centrifugal hydrodynamic instabilityt thecurs in boundary layers over concave walls can be used to
increase the heat transfer rate. This instability giveg tig streamwise vortices known as Goertler Vortices (GVgsé&h
vortices causes also an increase in the skin friction. Ingfesent work the increase in heat transfer rate and in the ski
friction are analyzed. The work is carried out by a Spatiatdat Numerical Simulation. The Navier-Stokes equation
is written in vorticity-velocity formulation. The time agration is done via a classical” order method. The spatial
derivatives are calculated using high-order compact fiiiiference methods (streamwise and wall-normal dire&jon
and spectral methods (spanwise direction). The flow is distliby steady suction and blowing flow at wall. 4 different
wavelengths were disturbed in all numerical tests. Thelteshows that the increase in heat transfer can be greatar th
the increase in the skin friction when Prandtl number is geeshan 1.
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1. INTRODUCTION

The practical interest in intensifying surface heat transétes with the least penalty follows the need to reduce
energy consumption via more efficient systems. Vorticeshaad transfer have been under study, with leading examples
discussed by Fiebig (1996).

Vortices have always to be considered together with theiegeion when flow losses are of importance because their
generation causes the major contribution to the flow losEks.heat transfer due to vortices, in contrast, is independe
of their generation. For steady flow, longitudinal vortigge more effective than transverse vortices for heat teansf
enhancement because longitudinal vortices provide artiaddi mode of thermal energy transport, spiraling tramspo
while transverse vortices generate no additional modereésiwise energy transport. Transverse vortices lead to sel
sustained oscillations and transition to turbulence atld®eynolds number than longitudinal vortices.

Recent measurements (L. Momayez and Peershossaini, 20@)ated under well-controlled conditions were carried
out on a concave heated wall in order to understand the sftédtoertler instability and its transition to turbulenae o
heat transfer from the wall to the boundary layer. Another af the experiment was to obtain reliable data and pertinent
dimensionless parameters to scale the heat-transfergmnaflost appropriately. Analysis of the effects of the Geertl
vortex wavelength and of perturbation wire diameter shdwasthe smaller the vortex wavelength, the faster the appare
transition to turbulence. Moreover, larger wire diametds® cause a faster boundary-layer transition. The cosfiticif
local convective heat transfer between the fluid and walllmamneduced to either the local Nusselt or Stanton number.
At the wall heat is identified by Stanton number St, which ikwlated from the measured wall temperatures and wall
heat flux. According to them, the Staton numiSélis more appropriate in describing heat transfer in the lamiagime
because its evolution allows immediate comprehensionefltiw state in various longitudinal positions. Moreovet,
has the advantage of being analogous to the friction coeffiicit is physically more interesting than Nusselt number.

In Girgis and Liu (2006), the spanwise averaged streamwadeeity gradient, obtained by Goertler flow, is studied
in terms of skin friction. In the absence of wavy disturbatwéhe steady flow, the skin friction due to nonlinear steady
longitudinal Goertler vortex can already nearly bridge tfsition from the local laminar skin friction values taath
turbulent skin friction. Their results were based in the exikpental measurements by Swearingen and Blackwelder
(1987). The emphasis is placed on the nonlinear modificatfidhe steady problem by Reynolds stresses of the wavy
disturbance, when it is found that skin friction increasedl wbove the local turbulent boundary layer value.

In the present work, by means of Spatial Direct Numerical ($ation, the heat transfer over a concave surface is
analyzed. The flow over concave surface can be hydrodyndynicestable giving rise to streamwise vortices (Goertler
Vortices), which increase the skin friction and heat transtes. The work is divided as follows: the next sectiomsho
the formulation adopted; in section 3the numerical mesrare described; the results are shown in section 4. andshe |
section gives the main conclusions of the work.
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2. FORMULATION

In this section the governing equations and the numerictiog®logy implemented are presented. The Navier-Stokes
equations written in the vorticity-velocity formulationene discretized using high-order finite-differences anetctpl
approximations for the spatial derivatives. A fourth orBeinge-Kutta scheme for the temporal discretization.

2.1 Governing Equations

The governing equations are the incompressible, NavigkeStequations with constant viscosity. Defining the vertic
ity as the negative curl of the velocity vector, and usingfétoe that both the velocity and the vorticity fields are soielal,
one can obtain the following vorticity transport equatioreach direction:
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where

a B0 D — Byl (4)
b o= D0 — w0, (5)
¢ o= O,0—©.0, (6)
d = @, @

are the nonlinear terms resulting from convection, vortestshing and vortex bending. The variablest, w, w., @, &)
are the velocity and vorticity components in the streamwig|-normal and spanwise directions respectivelis the
time. The Laplace operator is:
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The continuity equation is given by:
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The heat transfer transport equation adopted in the presektis:
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(10)

whered is the non dimensional temperature givertby: (T — Ty) /(T — Tt), whereT is the dimensional temperature,
andT,, andTj are the temperature values outside from the thermal bowvalger and at the wall, respectively.

The above equations are presented in a non-dimensional fimenreference length is a plate characteristic ledgth
and the reference velocity is the free stream velobity. The Reynolds number is given e = UL /7, wherev
is the kinematic viscosity. The Prandtl number is givenfy = v/«, wherev is the kinematic viscosity and is the

thermal diffusivity of the fluid. The Goertler number is givey Go = (k.v/Re)'/?. The termsGo? g—g/(\/Reh) and

GOQ% (\/Eh) are the leading order curvature terms, whiere 1 — k.y, k. = L/R is the wall curvature an@ is the
curvature radius. Although the objective of the currentlgtis on the steady flow, the simulations were performed with
the introduction of steady disturbances that generate Yh@ fis explains the time derivative in the equations, angeb
the results it takes some computational time until the tim@vdtives vanishes.
Taking the definition of the vorticity and the mass conseovaéquation, one can obtain Poisson-type equations for
each velocity component:
&% 0*u oo, 0%
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2.2 Disturbance Formulation

A disturbance formulation was adopted in the current sttitgrefore the flow variables were decomposed in a base
flow and a perturbation:

f=t+f (14)

With such formulation, the stability analysis of any basevf(®lasius, Falkner-Skan, etc.), can be easily performed as
the linear and nonlinear terms can be isolated. Some disgatyes of this formulation are the indirect access to the flow
variables and a higher memory usage due to the larger nurhkariables.

The variableéfv: {0, 0,0, Wy, Wy, W5, (:)} are the total flow variables. The base flow is considered tingedsional,
therefore onlyu, vy, w., andd, are taken into account, where the inderdicates the base flow.

Introducing Eq. (14) in the equations (1) — (3), (10) and @ 1}).3) and subtracting the base quantities, the equations
for the perturbations result in:
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where the nonlinear terms b, ¢, d, e andg are:
a = wz(vp+v)—wy(up+u), (22)
b = (wy +w)(up +u) — wyw, (23)
c = ww— (wy +ws)(vp +0), (24)
d = 2upu+ u’ (25)
e = upxO+uxlp+uxb, (26)
f = wvwxO04+vx0,+vx0, (27)
g = w(b+0). (28)

3. NUMERICAL METHOD

In this section the discretization of the adopted equatsmsthe boundary conditions adopted in the simulations are
shown.
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Figure 1. Solution domain.

3.1 Discretization of Field Equations

The flow is assumed to be periodic in the spanwise directidrerdfore, the flow field can be expanded in Fourier
series withK spanwise Fourier modes:

K
fa,y,z,t) =Y Fi(z,y, )l (29)
k=0
Wheref = u7v7w7wx7wyaw2797a/ab7 C, d,@, fagl Fk = Uk7Vk7Wk7QIkaka7QZka ezkaAkaBka Ck7Dk;Ek7Fk; Gka
and 3y is the spanwise wavenumber given By = 2xk/)., and\, is the spanwise wavelength of the fundamental
spanwise Fourier mode, and= /—1.
Substituting the Fourier transforms (Eqg. 29) in the votyi¢ransport equations (15 — 17), in the velocity Poisson
equations (18 — 20), and in the heat transfer transport Eoqu@l) yield the governing equations in the Fourier space:

B O g - S B Lo, (30)
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whereV; = (88—;2 + 68—; —B2).

The equations (30 — 36) were solved numerically in the dorslagwn schematically in Fig. 1. The calculations are
done on an orthogonal uniform grid, parallel to the wall. Tih&l enters the computational domaina& xy and exits at
the outflow boundary: = z,,... Disturbances were introduced into the flow field using spa@wuction and blowing in
a disturbance strip at the wall. This strip is located betweeandz,. In the region located betweeny andx, a buffer
domain technique Klokeet al. (1993) was implemented in order to avoid wave reflectionsatutflow boundary. In
these simulations a 2D Navier-Stokes solution, taking &doount the curvature term, was used as the base flow, and for
the thermal boundary layer, the standard similarity solutibtained using the Pohlhausen formula was used.

The time derivatives in the vorticity transport equatiorerevdiscretized with a classic&l” order Runge-Kutta in-
tegration scheme Ferziger and Peric (1997). The spatialaliees were calculated using6" order compact finite
difference-scheme L. F. Souza and Medeiros (2005); Sou¥@B{2Lele (1992). Thé’ -Poisson equation — Eq. (34) —
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was solved using a multigrid Full Approximation Scheme ([F&8iben and Trottenberg (1981). A V-cycle working with
4 grids was implemented.

3.2 Boundary Conditions

The governing equations are complemented by the spedificafi boundary conditions. At the waly(= 0), a
no-slip condition was imposed for the streamwig)(and the spanwiséX;) velocity components. The wall-normal
velocity component at the wallf,) was specified at the suction and blowing strip region betwegeandxs, where the
disturbances were introduced. Away from the disturbanoeiggor this velocity component was set to zero. The functio
used for the wall-normal velocity,—, 4 at the disturbance generator is:

Vie1-4(4,0,8) = Asing(e) for 1 <i<ly and

Vie1-4(2,0,t) = 0 for [<1l; and [> Iy, (37)

wheree = 7(l — 11)/(l2 — I1) and A is a real constant chosen to adjust the amplitude of therbsiwe. The variable
indicates the grid point locatiar, in the streamwise direction, and poiisandl, correspond ta;; andx, respectively.
For all modes: > 4 the value ofV;, = 0 at the wall were settled.

At the inflow boundary{ = (), the velocity and vorticity components and the tempegs&we specified based on the
similarity solutions. At the outflow boundary & z,,..), the second derivatives with respect to the streamwisetiim
of the velocity and vorticity components are set to zero. bt tipper boundary(= 4.....) the flow is considered non
rotational. This is satisfied by setting all vorticity conmgmts and their derivatives to zero. The wall-normal vejoci
component at the upper boundary was settled according totiition:

A

8—y|x"y’"“’t =0. (38)

In addition, at the wall, the conditiofiV,. /0y = 0 was imposed in the solution of tH&, velocity Poisson equation
(Eg. 33), to ensure mass conservation. The equations useddinating the vorticity components at the wall are:

0%, 0%Q,,

gt e = e~ BViV (39)
09,
&zzk = B, — Vilk. (40)

A damping zone near the outflow boundary was defined in whidhaldisturbances are gradually damped down to
zero (Klokeret al, 1993). This technique is used to avoid reflections in thé@mutboundary. Meitz and Fasel (2000)
adopted a fifth order polynomial, and the same function wasl s the present model. The basic idea is to multiply the
vorticity components by a ramp functigfi(x) after each sub-step of the integration method. Using tlisrtigue, the
vorticity components are taken as:

Qk(wayvﬁ) :fl(w)QZ(xvyat)v (41)

whereQ; (x,y, t) is the disturbance vorticity component that results froeRunge-Kutta integration arfd () is a ramp
function that goes smoothly fromto 0. The implemented function was:

fi(z) = f(e) =1 — 66° + 15¢* — 1067, (42)

wheree = (I —13)/(l4 — I3) for I3 <1 < l4. The pointd; andl, correspond to the positiong andx, in the streamwise
direction, respectively. To ensure good numerical resatid efficiency a minimum distance betweenandz, and
betweent, and the end of the domain,,,, had to be studied. In the simulations presented here theszwa30 grid
points in each region.

Another buffer domain, located near the inflow boundary wss implemented in the code. As pointed out by Meitz
(1996), in simulations involving streamwise vortices, éefions due to the vortices at the inflow can contaminate the
numerical solution. The damping function is similar to tieased for the outflow boundary:

fao(x) = f(e) = 66° — 15€* + 10€3, (43)

whereeise = (I —1)/(l; — 1) for the rangel <1 < ;. All the vorticity components were multiplied by this fufan in
this region.
The boundary conditions for the temperature were:

e inflow -6 = 0;
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e outflow -0 = 0, since the same buffer domain for the vorticity was also iaddbr the temperature;
e wall—60 =0;
e upper boundary — the values were obtained from the heaféranansport equation.

4. RESULTS

The parameters adopted in the simulations were: the Reyimaldhber wasRe = 33124; the Goertler Number was
Go = 2.385; the distance between two consecutive points inattendy directions werelz = 0.015 for all Prandtl
number, andly = 0.00069 for Pr = 0.72 and Pr = 1.00, anddy = 0.00055 for Pr = 7.07; the number of points in the
x andy directions wered57, and561 for Pr = 0.72 and Pr = 1.0, and449 for Pr = 7.07, respectively witheg = 1.0
andL = 100mm; the delta in time wadt = 0.003; the disturbances were introduced in the posifidizs < z < 2.185,
with an amplitude ofd;,—,_, = 1.0 x 10~?3; in the z direction,21 Fourier modes were used witd points in the physical
space. The disturbances were introduced for four diffenevielengths:\ = 4.5mm, A\ = 9mm, A = 18mm and
A = 36mm and three different values of Prandtl Number were also sitedl|for each wavelengtt®r = 0.72, Pr = 1
andPr = 7.07. The valuesPr = 0.72 and Pr = 7.07 are typical for gaseous and liquid media, respectively.

The first result shows an analysis of the hydrodynamic boynldgier and the evolution of hydrodynamic instability
for Pr = 1, where the hydrodynamic boundary layer is equal to the taeboundary layer, then will analyze the
Skin Friction and finally the analysis for each number Praflt = 1,0.72 e 7.07); where all analysis are performed
introducing steady disturbances for the wavelengtks4.5mm, A = 9mm, A = 18mm and\ = 36mm simultaneously.

4.1 Evolution of hydrodynamicinstability

First, the base flow is analyzed when the steady disturbameesintroduced by four mod€s, k), k = 1 — 4. These
disturbances are introduced by imposing a steady wall-abvetocity distribution within the disturbance strip aetwall.

For the calculation of a nonlinear, saturated Goertletexoscenario the Goertler vortex-mode packet is introduced
with an amplituded,—,_4 = 1.0 x 1073, The Fourier analysis shows that the disturbance compsraatstrongly
amplified first by primary instability and saturate with @ifént amplitudes. Figure 2 shows that the m@ule) attains
the highest amplitude and clearly dominates the saturagigion, although the amplitude of mod@s1) and(0, 2) reach
high values in this region.

Figure 2. Amplitude of maximum velocity componentin the streamwise direction. Steadyesdbm(0, 1) to (0, 16).
The mean flow distortion is also show ().

The hydrodynamic boundary layer and thermal boundary |lagge the same isocontours when = 1. Figure 3
shows the spatial evolution of the hydrodynamic (or thejrhalindary layer. These figures shown the isovelocity lines,
fromwu = 0.1 tow = 0.9 in crosscut planes x y. The streamwise positions goes fram= 8,0 tox = 11 in space ofl.

Two regions can be seen in a flow with Goertler vortices, theagh and downwash regions. In the downwash region
the vortices pump high velocity flow to a region close to thd vémashing the boundary layer. In the upwash region the
opposite occurs. In the non-linear region, the downwasiondg stronger than the upwash region, causing an increase i
the skin friction. The skin friction in a boundary layer camdalculated given by:

o
dy wall

cr=2v Uz (44)
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Figure 3. Isovelocity contours fromm= 0.1 tou = 0.9 in az x y planes. Top left x = 8.0, top right x = 9.0, bottom left x
=10.0 and bottom right x = 11.0.

The term that changes in the streamwise direction in thiaou is theg—Z|wa”. Figure 4 shows the value obtained
without the presence of the vortices is shown for compar({s@ashed line), and also the average value in the spanwise
direction is shown (thicker line). The vortices increades value ofC; by 193% if compared with the value obtained
without vortices. Iz = 12, the values of skin friction for Blasius and Goertler arepegivelyC'y = 0.00109581 and

Cy = 0.00320666.

0.0035 T T T T T

0.003

Goertler Flow

0.0015 |~ ~ -

000l b b

Figure 4. Streamwise evolution of the Skin friction coeéitiC;. Dashed — Value obtained for the flow without GV.
Thicker line — mean value with GV.
4.2 Analysisof heat transfer for Pr =1

The heat transfer analysis is carried out by checking tleastwise evolution of the Stanton number with and without
Goertler vortices. The Stanton number is given by:

Nuy
Sty = T 45
PrRe, (45)
whereNu, is the Nusselt number:
L
NUJ; = Gwall (46)

k(T, —Ty)’
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whereq,,q;; is the heat flux at the wall:

oT
Guall = _ka_y|wall (47)

For Pr = 1 the increase in the Stanton number with and without GV rehehsame rate as the skin friction, as
expected. The values of Stanton for Blasius and GoertleremectivelySt = 0.00073386 and St = 0.00214749, an
increase inl93%.
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: 3

Figure 5. Streamwise evolution of the Stanton number. Dishéalue obtained for the flow without GV. Thicker line —
mean value with GV.

4.3 Analysisof heat transfer for Pr = 0.72

In the present case, the hydrodynamic boundary layer idesnthan the thermal boundary layer. The isovelocity and
isothermal contours are shown in Fig. 6 in the streamwis#ipns: = 11.0. it can be observed that the thermal boundary
layer is also smashed in the wall direction, increasing taatsn number.

0.25 T T
02t E

0.15 -1

Figure 6. Isovelocity (dashed lines) and isothermal (daiels) contours in a x y plane atr = 11.

The streamwise evolution of Stanton number for Blasius aodrtBer is shown in Fig. 7. It can be observed that
until x = 5 the non-linear effects are small and the values os Stantorbeuwith and without Goertler are the same.
After this region, the non-linear effects increases, arddibwnwash region becomes more pronounced than the upwash
region, increasing the Stanton number. The values at tearswise positiorr = 12.0 are St = 0.00065336 and
St = 0.00171752, with and without GV, respectively. This gives and increab&62% in the number with the GV. This
increase is lower than the increase in skin friction causeithé Goertler Vortices.

4.4 Analysisof heat transfer for Pr = 7.07

In the present section the results are for = 7.07, therefore the hydrodynamic boundary layer is larger tien t
thermal boundary layer, as can be observed in Fig. 8, in tearsiwise positior = 11.0. The downwash region is much
larger than the upwash region and this is particularly olesfor the thermal boundary.



Proceedings of COBEM 2011
Copyright © 2011 by ABCM

21st International Congress of Mechanical Engineering

October 24-28, 2011, Natal, RN, Brazil

0.0025

0.002

o
o
=}
=3
o

o Stanton ¢

.001 |-

Goertler flow

0.0005
3

Figure 7. Streamwise evolution of the Stanton number. Dishéalue obtained for the flow without GV. Thicker line —

mean value with GV.
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Figure 8. Isovelocity (dashed lines) and isothermal (daiels) contours in a x y plane atz = 11.

The same analysis of the Stanton number distribution in tfeamwise direction was carried out, and the result is
shown in Fig. 9. The values of Stanton number for Blasius aoerter are respectivelyt = 9.79687 /times10~% and
St = 4.1985343 /times10~°. In the present case this represents an incread2séf in this number. The increase in skin
friction is 193%, as shown in section 4.1 Therefore, in the present casesihérgheat transfer is greater than the losses
in skin friction. These results show that with the use of dérgal instabilities in boundary layer, one can obtaintég

heat transfer coefficient, whapr > 1.
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n Stanton w
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Figure 9. Streamwise evolution of the Stanton number. Dishéalue obtained for the flow without GV. Thicker line —

mean value with GV.
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5. CONCLUSIONS

In the present work the heat rates over a concave surfacenalgzad. The results shows that the heat transfer on
a concave surface increases in the presence of GoertlécesrtAn increase 0f93% in the skin friction values was
observed with the adopted configuration. The analysis ofifa transfer rates was done by Stanton number variation in
the streamwise direction. It was observed that:

e For Pr = 0.72 the value ofSt increased 62% if compared to Blasius flow;
e For Pr = 1.00 the value ofSt increased 93% if compared to Blasius flow;

e For Pr = 7.07 the value ofSt increase®28% if compared to Blasius flow.

Therefore, these results show that the presence of Go¥fdtéices in boundary layer, one can obtain higher heat
transfer coefficient. FoPr = 7.07 the total gain in heat transfer rate is much greater than kivefaction. This
behaviour should be same f6% > 1, showing that this is a payoff system.

6. ACKNOWLEDGEMENTS
The authors acknowledge the financial support received FARESP under grant 2010/00495-1.
7. REFERENCES

Ferziger, L.F. and Peric, M., 199Computational Methods for Fluid DynamicSpringer-Verlag Berlin Heidelberg, New
York.

Fiebig, M., 1996. “Vortices and heat transfeZ. Angew. Math. Mech\ol. 76, pp. 1-16.

Girgis, 1.G. and Liu, J.T.C., 2006. “Nonlinear mechanicswavy instability of steady nonliear longitudinal goertler
vortices on a concave wallPhys. Fluids \Vol. 18.

Kloker, M., Konzelmann, U. and Fasel, H.F., 1993. “Outflovubdary conditions for spatial navier-stokes simulatiohs o
transition boundary layers’AIAA Journal Vol. 31, pp. 620-628.

L. F. Souza, M.T.M. and Medeiros, M.A.F., 2005. “The advgetof using high-order finite differ- ences schemes in
laminar-turbulent transition studiesthternational Journal for Numerical Methods in Fluidgol. 48, pp. 565-592.

L. Momayez, P.D. and Peershossaini, H., 2004. “Some unéxgetfects of wabelenght and pertubation strength on heat
transfer enhancement by goertler instabilitirit. J. Heat Mass Transfelol. 47, pp. 495-492.

Lele, S., 1992. “Compact finite difference schemes with spetike resolution”. J. Computational Physi¢d/ol. 103,
pp. 16-42.

Meitz, H.L., 1996. Numerical Investigation of Suction in a Trasitional FlalaR Boundary Layer Ph.D. thesis, The
University of Arizona.

Meitz, H.L. and Fasel, H.F., 2000. “A compact-differenchesme for the navier-stokes equations in vorticity-velpcit
formulation”. J. Computational Physi¢&0l. 157, pp. 371-403.

Souza, L.F., 2003 Instabilidade centrifuga e transicao para turbuléncia esc@amentos laminares sobre superficies
cobncavasPh.D. thesis, Instituto Tecnol6gico de Aeronautica, Braz

Stiben, K. and Trottenberg, U., 1984onlinear multigrid methods, the full approximation scleeibIn-Porz, chapter 5,
pp. 58-71.

Swearingen, J.D. and Blackwelder, R.F., 1987. “The growit areakdown of streamwise vortices in the presence of a
wall”. J. Fluid Mech, Vol. 182, pp. 255-290.

8. Responsibility notice

The author(s) is (are) the only responsible for the printediemial included in this paper



