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Abstract. The increase in heat transfer rates aiming efficient systemsis one of the goals in convection heat transfer
exchangers. The centrifugal hydrodynamic instability that occurs in boundary layers over concave walls can be used to
increase the heat transfer rate. This instability gives rise to streamwise vortices known as Goertler Vortices (GV). These
vortices causes also an increase in the skin friction. In thepresent work the increase in heat transfer rate and in the skin
friction are analyzed. The work is carried out by a Spatial Direct Numerical Simulation. The Navier-Stokes equation
is written in vorticity-velocity formulation. The time integration is done via a classical4th order method. The spatial
derivatives are calculated using high-order compact finitedifference methods (streamwise and wall-normal directions)
and spectral methods (spanwise direction). The flow is disturbed by steady suction and blowing flow at wall. 4 different
wavelengths were disturbed in all numerical tests. The results shows that the increase in heat transfer can be greater than
the increase in the skin friction when Prandtl number is greater than 1.
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1. INTRODUCTION

The practical interest in intensifying surface heat transfer rates with the least penalty follows the need to reduce
energy consumption via more efficient systems. Vortices andheat transfer have been under study, with leading examples
discussed by Fiebig (1996).

Vortices have always to be considered together with their generation when flow losses are of importance because their
generation causes the major contribution to the flow losses.The heat transfer due to vortices, in contrast, is independent
of their generation. For steady flow, longitudinal vorticesare more effective than transverse vortices for heat transfer
enhancement because longitudinal vortices provide an additional mode of thermal energy transport, spiraling transport,
while transverse vortices generate no additional mode of streamwise energy transport. Transverse vortices lead to self
sustained oscillations and transition to turbulence at lower Reynolds number than longitudinal vortices.

Recent measurements (L. Momayez and Peershossaini, 2004) conducted under well-controlled conditions were carried
out on a concave heated wall in order to understand the effects of Goertler instability and its transition to turbulence on
heat transfer from the wall to the boundary layer. Another aim of the experiment was to obtain reliable data and pertinent
dimensionless parameters to scale the heat-transfer problem most appropriately. Analysis of the effects of the Goertler
vortex wavelength and of perturbation wire diameter shows that the smaller the vortex wavelength, the faster the apparent
transition to turbulence. Moreover, larger wire diametersalso cause a faster boundary-layer transition. The coefficient of
local convective heat transfer between the fluid and wall canbe reduced to either the local Nusselt or Stanton number.
At the wall heat is identified by Stanton number St, which is calculated from the measured wall temperatures and wall
heat flux. According to them, the Staton numberSt is more appropriate in describing heat transfer in the laminar regime
because its evolution allows immediate comprehension of the flow state in various longitudinal positions. Moreover,St
has the advantage of being analogous to the friction coefficient, it is physically more interesting than Nusselt number.

In Girgis and Liu (2006), the spanwise averaged streamwise-velocity gradient, obtained by Goertler flow, is studied
in terms of skin friction. In the absence of wavy disturbanceto the steady flow, the skin friction due to nonlinear steady
longitudinal Goertler vortex can already nearly bridge thetransition from the local laminar skin friction values to that
turbulent skin friction. Their results were based in the experimental measurements by Swearingen and Blackwelder
(1987). The emphasis is placed on the nonlinear modificationof the steady problem by Reynolds stresses of the wavy
disturbance, when it is found that skin friction increases well above the local turbulent boundary layer value.

In the present work, by means of Spatial Direct Numerical Simulation, the heat transfer over a concave surface is
analyzed. The flow over concave surface can be hydrodynamically unstable giving rise to streamwise vortices (Goertler
Vortices), which increase the skin friction and heat transfer rates. The work is divided as follows: the next section shows
the formulation adopted; in section 3.the numerical methods are described; the results are shown in section 4.; and the last
section gives the main conclusions of the work.
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2. FORMULATION

In this section the governing equations and the numerical methodology implemented are presented. The Navier-Stokes
equations written in the vorticity-velocity formulation were discretized using high-order finite-differences and spectral
approximations for the spatial derivatives. A fourth orderRunge-Kutta scheme for the temporal discretization.

2.1 Governing Equations

The governing equations are the incompressible, Navier-Stokes equations with constant viscosity. Defining the vortic-
ity as the negative curl of the velocity vector, and using thefact that both the velocity and the vorticity fields are solenoidal,
one can obtain the following vorticity transport equation in each direction:
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where
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b̃ = ω̃zũ− ω̃xw̃, (5)

c̃ = ω̃yw̃ − ω̃z ṽ, (6)

d̃ = ũ2, (7)

are the nonlinear terms resulting from convection, vortex stretching and vortex bending. The variables (ũ, ṽ, w̃, ω̃x, ω̃y, ω̃z)
are the velocity and vorticity components in the streamwise, wall-normal and spanwise directions respectively;t̃ is the
time. The Laplace operator is:
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The continuity equation is given by:
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The heat transfer transport equation adopted in the presentwork is:
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whereθ̃ is the non dimensional temperature given byθ̃ = (T − T0)/(T∞ −T0), whereT is the dimensional temperature,
andT∞ andT0 are the temperature values outside from the thermal boundary layer and at the wall, respectively.

The above equations are presented in a non-dimensional form. The reference length is a plate characteristic lengthL
and the reference velocity is the free stream velocityU∞. The Reynolds number is given byRe = U∞L/ν, whereν
is the kinematic viscosity. The Prandtl number is given byPr = ν/α, whereν is the kinematic viscosity andα is the

thermal diffusivity of the fluid. The Goertler number is given by Go = (kc
√
Re)1/2. The termsGo2 ∂d̃

∂x/(
√
Reh) and

Go2 ∂d̃
∂z /(

√
Reh) are the leading order curvature terms, whereh = 1− kcy, kc = L/R is the wall curvature andR is the

curvature radius. Although the objective of the current study is on the steady flow, the simulations were performed with
the introduction of steady disturbances that generate the GV. This explains the time derivative in the equations, and toget
the results it takes some computational time until the time derivatives vanishes.

Taking the definition of the vorticity and the mass conservation equation, one can obtain Poisson-type equations for
each velocity component:
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2.2 Disturbance Formulation

A disturbance formulation was adopted in the current study,therefore the flow variables were decomposed in a base
flow and a perturbation:

f̃ = fb + f. (14)

With such formulation, the stability analysis of any base flow (Blasius, Falkner-Skan, etc.), can be easily performed as
the linear and nonlinear terms can be isolated. Some disadvantages of this formulation are the indirect access to the flow
variables and a higher memory usage due to the larger number of variables.

The variables̃f = {ũ, ṽ, w̃, ω̃x, ω̃y, ω̃z, Θ̃} are the total flow variables. The base flow is considered two-dimensional,
therefore onlyub, vb, ωzb andθb are taken into account, where the indexb indicates the base flow.

Introducing Eq. (14) in the equations (1) – (3), (10) and (11)– (13) and subtracting the base quantities, the equations
for the perturbations result in:
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where the nonlinear termsa, b, c, d, e andg are:

a = ωx(vb + v)− ωy(ub + u), (22)

b = (ωzb + ωz)(ub + u)− ωxw, (23)

c = ωyw − (ωzb + ωz)(vb + v), (24)

d = 2ubu+ u2. (25)

e = ub ∗ θ + u ∗ θb + u ∗ θ, (26)

f = vb ∗ θ + v ∗ θb + v ∗ θ, (27)

g = w(θb + θ). (28)

3. NUMERICAL METHOD

In this section the discretization of the adopted equationsand the boundary conditions adopted in the simulations are
shown.
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Figure 1. Solution domain.

3.1 Discretization of Field Equations

The flow is assumed to be periodic in the spanwise direction. Therefore, the flow field can be expanded in Fourier
series withK spanwise Fourier modes:

f(x, y, z, t) =
K∑

k=0

Fk(x, y, t)e
(iβkz). (29)

wheref = u, v, w, ωx, ωy, ωz, θ, a, b, c, d, e, f, g; Fk = Uk, Vk,Wk,Ωxk
,Ωyk

,Ωzk ,Θzk , Ak, Bk, Ck, Dk, Ek, Fk, Gk;
andβk is the spanwise wavenumber given byβk = 2πk/λz, andλz is the spanwise wavelength of the fundamental
spanwise Fourier mode, andi =

√
−1.

Substituting the Fourier transforms (Eq. 29) in the vorticity transport equations (15 – 17), in the velocity Poisson
equations (18 – 20), and in the heat transfer transport equation (21) yield the governing equations in the Fourier space:
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The equations (30 – 36) were solved numerically in the domainshown schematically in Fig. 1. The calculations are
done on an orthogonal uniform grid, parallel to the wall. Thefluid enters the computational domain atx = x0 and exits at
the outflow boundaryx = xmax. Disturbances were introduced into the flow field using spanwise suction and blowing in
a disturbance strip at the wall. This strip is located between x1 andx2. In the region located betweenx3 andx4 a buffer
domain technique Klokeret al. (1993) was implemented in order to avoid wave reflections at the outflow boundary. In
these simulations a 2D Navier-Stokes solution, taking intoaccount the curvature term, was used as the base flow, and for
the thermal boundary layer, the standard similarity solution obtained using the Pohlhausen formula was used.

The time derivatives in the vorticity transport equations were discretized with a classical4th order Runge-Kutta in-
tegration scheme Ferziger and Peric (1997). The spatial derivatives were calculated using a6th order compact finite
difference-scheme L. F. Souza and Medeiros (2005); Souza (2003); Lele (1992). TheV -Poisson equation – Eq. (34) –
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was solved using a multigrid Full Approximation Scheme (FAS) Stüben and Trottenberg (1981). A V-cycle working with
4 grids was implemented.

3.2 Boundary Conditions

The governing equations are complemented by the specification of boundary conditions. At the wall (y = 0), a
no-slip condition was imposed for the streamwise (Uk) and the spanwise (Wk) velocity components. The wall-normal
velocity component at the wall (Vk) was specified at the suction and blowing strip region between x1 andx2, where the
disturbances were introduced. Away from the disturbance generator this velocity component was set to zero. The function
used for the wall-normal velocityVk=1−4 at the disturbance generator is:

Vk=1−4(i, 0, t) = A sin3(ǫ) for l1 ≤ i ≤ l2 and

Vk=1−4(x, 0, t) = 0 for l < l1 and l > l2, (37)

whereǫ = π(l − l1)/(l2 − l1) andA is a real constant chosen to adjust the amplitude of the disturbance. The variablel
indicates the grid point locationxl in the streamwise direction, and pointsl1 andl2 correspond tox1 andx2 respectively.
For all modesk > 4 the value ofVk = 0 at the wall were settled.

At the inflow boundary (x = x0), the velocity and vorticity components and the temperature are specified based on the
similarity solutions. At the outflow boundary (x = xmax), the second derivatives with respect to the streamwise direction
of the velocity and vorticity components are set to zero. At the upper boundary (y = ymax) the flow is considered non
rotational. This is satisfied by setting all vorticity components and their derivatives to zero. The wall-normal velocity
component at the upper boundary was settled according to thecondition:

∂Vk

∂y
|x,ymax,t = 0. (38)

In addition, at the wall, the condition∂Vk/∂y = 0 was imposed in the solution of theUk velocity Poisson equation
(Eq. 33), to ensure mass conservation. The equations used for evaluating the vorticity components at the wall are:
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− βk∇2

kVk (39)
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−∇2
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A damping zone near the outflow boundary was defined in which all the disturbances are gradually damped down to
zero (Klokeret al., 1993). This technique is used to avoid reflections in the outflow boundary. Meitz and Fasel (2000)
adopted a fifth order polynomial, and the same function was used in the present model. The basic idea is to multiply the
vorticity components by a ramp functionf1(x) after each sub-step of the integration method. Using this technique, the
vorticity components are taken as:

Ωk(x, y, t) = f1(x)Ω
∗

k(x, y, t), (41)

whereΩ∗

k(x, y, t) is the disturbance vorticity component that results from the Runge-Kutta integration andf1(x) is a ramp
function that goes smoothly from1 to 0. The implemented function was:

f1(x) = f(ǫ) = 1− 6ǫ5 + 15ǫ4 − 10ǫ3, (42)

whereǫ = (l− l3)/(l4 − l3) for l3 ≤ l ≤ l4. The pointsl3 andl4 correspond to the positionsx3 andx4 in the streamwise
direction, respectively. To ensure good numerical resultsand efficiency a minimum distance betweenx3 andx4 and
betweenx4 and the end of the domainxmax had to be studied. In the simulations presented here the zones had30 grid
points in each region.

Another buffer domain, located near the inflow boundary was also implemented in the code. As pointed out by Meitz
(1996), in simulations involving streamwise vortices, reflections due to the vortices at the inflow can contaminate the
numerical solution. The damping function is similar to the one used for the outflow boundary:

f2(x) = f(ǫ) = 6ǫ5 − 15ǫ4 + 10ǫ3, (43)

whereǫ is ǫ = (l− 1)/(l1 − 1) for the range1 ≤ l ≤ l1. All the vorticity components were multiplied by this function in
this region.

The boundary conditions for the temperature were:

• inflow – θ = 0;
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• outflow –θ = 0, since the same buffer domain for the vorticity was also applied for the temperature;

• wall – θ = 0;

• upper boundary – the values were obtained from the heat transfer transport equation.

4. RESULTS

The parameters adopted in the simulations were: the Reynolds Number wasRe = 33124; the Goertler Number was
Go = 2.385; the distance between two consecutive points in thex andy directions weredx = 0.015 for all Prandtl
number, anddy = 0.00069 for Pr = 0.72 andPr = 1.00, anddy = 0.00055 for Pr = 7.07; the number of points in the
x andy directions were857, and561 for Pr = 0.72 andPr = 1.0, and449 for Pr = 7.07, respectively withx0 = 1.0
andL = 100mm; the delta in time wasdt = 0.003; the disturbances were introduced in the position1.735 ≤ x ≤ 2.185,
with an amplitude ofAk=1−4 = 1.0× 10−3; in thez direction,21 Fourier modes were used with64 points in the physical
space. The disturbances were introduced for four differentwavelengths:λ = 4.5mm, λ = 9mm, λ = 18mm and
λ = 36mm and three different values of Prandtl Number were also simulated for each wavelength:Pr = 0.72, Pr = 1
andPr = 7.07. The valuesPr = 0.72 andPr = 7.07 are typical for gaseous and liquid media, respectively.

The first result shows an analysis of the hydrodynamic boundary layer and the evolution of hydrodynamic instability
for Pr = 1, where the hydrodynamic boundary layer is equal to the thermal boundary layer, then will analyze the
Skin Friction and finally the analysis for each number Prandtl (Pr = 1, 0.72 e 7.07); where all analysis are performed
introducing steady disturbances for the wavelengthsλ = 4.5mm,λ = 9mm, λ = 18mm andλ = 36mm simultaneously.

4.1 Evolution of hydrodynamic instability

First, the base flow is analyzed when the steady disturbanceswere introduced by four modes(0, k), k = 1− 4. These
disturbances are introduced by imposing a steady wall-normal velocity distribution within the disturbance strip at the wall.

For the calculation of a nonlinear, saturated Goertler-vortex scenario the Goertler vortex-mode packet is introduced
with an amplitudeAk=1−4 = 1.0 × 10−3. The Fourier analysis shows that the disturbance components are strongly
amplified first by primary instability and saturate with different amplitudes. Figure 2 shows that the mode(0, 4) attains
the highest amplitude and clearly dominates the saturationregion, although the amplitude of modes(0, 1) and(0, 2) reach
high values in this region.
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Figure 2. Amplitude of maximumu velocity component in the streamwise direction. Steady modes from(0, 1) to (0, 16).
The mean flow distortion is also shown (0, 0).

The hydrodynamic boundary layer and thermal boundary layerhave the same isocontours whenPr = 1. Figure 3
shows the spatial evolution of the hydrodynamic (or thermal) boundary layer. These figures shown the isovelocity lines,
from u = 0.1 to u = 0.9 in crosscut planesz × y. The streamwise positions goes fromx = 8, 0 to x = 11 in space of1.

Two regions can be seen in a flow with Goertler vortices, the upwash and downwash regions. In the downwash region
the vortices pump high velocity flow to a region close to the wall, smashing the boundary layer. In the upwash region the
opposite occurs. In the non-linear region, the downwash region is stronger than the upwash region, causing an increase in
the skin friction. The skin friction in a boundary layer can be calculated given by:

cf = 2ν

∂u
∂y |wall

U2
∞

, (44)
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Figure 3. Isovelocity contours fromu = 0.1 to u = 0.9 in az × y planes. Top left x = 8.0, top right x = 9.0, bottom left x
= 10.0 and bottom right x = 11.0.

The term that changes in the streamwise direction in this equation is the∂u
∂y |wall. Figure 4 shows the value obtained

without the presence of the vortices is shown for comparison(dashed line), and also the average value in the spanwise
direction is shown (thicker line). The vortices increases the value ofCf by 193% if compared with the value obtained
without vortices. Inx = 12, the values of skin friction for Blasius and Goertler are respectivelyCf = 0.00109581 and
Cf = 0.00320666.
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Figure 4. Streamwise evolution of the Skin friction coefficientCf . Dashed – Value obtained for the flow without GV.
Thicker line – mean value with GV.

4.2 Analysis of heat transfer for Pr = 1

The heat transfer analysis is carried out by checking the streamwise evolution of the Stanton number with and without
Goertler vortices. The Stanton number is given by:

Stx =
Nux

PrRex
, (45)

whereNux is the Nusselt number:

Nux = qwall
L

k(Te − Tw)
, (46)
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whereqwall is the heat flux at the wall:

qwall = −k
∂T

∂y
|wall (47)

For Pr = 1 the increase in the Stanton number with and without GV reach the same rate as the skin friction, as
expected. The values of Stanton for Blasius and Goertler arerespectivelySt = 0.00073386 andSt = 0.00214749, an
increase in193%.
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Figure 5. Streamwise evolution of the Stanton number. Dashed – Value obtained for the flow without GV. Thicker line –
mean value with GV.

4.3 Analysis of heat transfer for Pr = 0.72

In the present case, the hydrodynamic boundary layer is smaller than the thermal boundary layer. The isovelocity and
isothermal contours are shown in Fig. 6 in the streamwise position x = 11.0. it can be observed that the thermal boundary
layer is also smashed in the wall direction, increasing the Stanton number.
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Figure 6. Isovelocity (dashed lines) and isothermal (solidlines) contours in az × y plane atx = 11.

The streamwise evolution of Stanton number for Blasius and Goertler is shown in Fig. 7. It can be observed that
until x = 5 the non-linear effects are small and the values os Stanton number with and without Goertler are the same.
After this region, the non-linear effects increases, and the downwash region becomes more pronounced than the upwash
region, increasing the Stanton number. The values at the streamwise positionx = 12.0 areSt = 0.00065336 and
St = 0.00171752, with and without GV, respectively. This gives and increaseof 162% in the number with the GV. This
increase is lower than the increase in skin friction caused by the Goertler Vortices.

4.4 Analysis of heat transfer for Pr = 7.07

In the present section the results are forPr = 7.07, therefore the hydrodynamic boundary layer is larger than the
thermal boundary layer, as can be observed in Fig. 8, in the streamwise positionx = 11.0. The downwash region is much
larger than the upwash region and this is particularly observed for the thermal boundary.
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Figure 7. Streamwise evolution of the Stanton number. Dashed – Value obtained for the flow without GV. Thicker line –
mean value with GV.
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Figure 8. Isovelocity (dashed lines) and isothermal (solidlines) contours in az × y plane atx = 11.

The same analysis of the Stanton number distribution in the streamwise direction was carried out, and the result is
shown in Fig. 9. The values of Stanton number for Blasius and Goertler are respectivelySt = 9.79687/times10−6 and
St = 4.1985343/times10−5. In the present case this represents an increase of328% in this number. The increase in skin
friction is 193%, as shown in section 4.1. Therefore, in the present case the gain in heat transfer is greater than the losses
in skin friction. These results show that with the use of centrifugal instabilities in boundary layer, one can obtain higher
heat transfer coefficient, whenPr > 1.
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Figure 9. Streamwise evolution of the Stanton number. Dashed – Value obtained for the flow without GV. Thicker line –
mean value with GV.
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5. CONCLUSIONS

In the present work the heat rates over a concave surface are analyzed. The results shows that the heat transfer on
a concave surface increases in the presence of Goertler vortices. An increase of193% in the skin friction values was
observed with the adopted configuration. The analysis of theheat transfer rates was done by Stanton number variation in
the streamwise direction. It was observed that:

• ForPr = 0.72 the value ofSt increased162% if compared to Blasius flow;

• ForPr = 1.00 the value ofSt increased193% if compared to Blasius flow;

• ForPr = 7.07 the value ofSt increased328% if compared to Blasius flow.

Therefore, these results show that the presence of GoertlerVortices in boundary layer, one can obtain higher heat
transfer coefficient. ForPr = 7.07 the total gain in heat transfer rate is much greater than the skin friction. This
behaviour should be same forPr > 1, showing that this is a payoff system.
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