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Abstract. Every day the quantity of vehicles on the roads around the world is increasing. This growth combined with
the negligence of drivers and some external factors such as road and weather conditions result on a huge rise on the
accidents and fatalities statistics. Since the beginning of the 21% century, many research groups and automotive
companies are developing and adapting technologies that can be embed on the vehicles in order to reduce these
dramatic numbers. One interesting example of these technologies is the detection and classification of mobile obstacles
(vehicles, people, etc.) in urban environments. This work presents the development of algorithms for identification,
classification, tracking, and prediction of moving obstacles,in special pedestrians. We used laser sensor data for
monitoring the environment that surrounds our test vehicle (a modified passenger car). Based on these data we
performed a computational treatment in order to classify all detected obstacles into two main classes. static and
mobile obstacles. Then, the algorithm tracks and predicts the mobile obstacles positions for a certain time window by
applying a Kalman Filter and a simply linear model for obstacle velocities. Even if the mobile obstacle is out of the
sensor range (or occluded by other obstacles), the Kalman Filter used can predict its estimated position and trajectory
for the time window. Another benefit of using a simple and more generic model is the fact that we are dealing with
obstacles that may have different dynamic characteristics (e.g.: cars, motorcycles, bicycles, pedestrians, etc.). Based
on the prediction of the obstacle positions, the vehicle navigator (an embedded navigation algorithm) can generate the
best path taking into account all detected and hidden obstacles.

Keywords: autonomous embedded navigation system, obstacle detection, obstacle classification, trajectory prediction,
laser sensor.

1. INTRODUCTION

Every day, the quantity of vehicles traveling oe thads around the world is increasing. This fegtnbined with
negligence of the drivers and some external factach as road and weather conditions, has incredrsetically the
statistics of accidents and fatalities. Due to,ttuiday many research groups and automotive indssire studying and
developing new technologies to improve the vehiskfety. Recently, some events and competitioris piégrce around
the world whose main goal was to demonstrate #wearchers in the field of mobile robotics couldra@sferred and
applied on autonomous passenger cars. EventshilkBARPA Great Challenges (in 2005 the challengiénMojave
Desert and in 2007 the urban challenge) in theddr8tates and ELROB (yearly since 2006) in Eurapénighlighting
the use of these technologies into military andliaiv vehicles. Thus, it is expected that in theamiuture passenger
cars will have onboard systems that will assistdtieer, for example, warning the driver if thesea danger situation.
In addition to this assistive technology that irees the safety, there are also other technoltiggésan improve the
driver comfort. An example of this technology thatbecoming quite popular among costumers is thelligent
Parking Assist (IPS), which is found in the ToyBtadus.

Many of the problems found in this research areaséitl open. The dream scenario of intelligentscanroving on
intelligent roads all connected and sharing dataisigg some wirefire technology is still far aw®ut, many of the
technologies developed for the mobile roboticsdfiehn be adapted and used on vehicles today. Soinifportant to
emphasize that in order to have an assistive aumnomous passenger car it is necessary to haeeabelifferent
sensors and computers onboard the vehicle. Thesorsewould collect data about the current vehgstite and
monitor its surrounds and give these data for thbezlded computers that would analyze them and elednich is the
best vehicle behavior taking into account the aurszenario and the vehicle goal. This is not gpkntask because
urban environments are extremely dynamic. Dependimghe sensor type used to monitor the environjiens
possible that when it detects an obstacle, it eszatblind region behind the detected obstacles ddm become a huge
problem for the vehicle navigation procedure, beeamoving objects can suddenly appear and the leelmay have
no time enough to avoid a collision. In order teyant this issue, tracking techniques are usednforing obstacles.
So, it is possible to keep moving obstacles datafoertain time window even if they are occludgdther obstacles
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and use these data to generate a safer path faetiee. In this paper we present the trackingiaigm developed.
We used laser sensor data to detect and clasgdgtepand a Kalman Filter to track their movemertd predict their
paths and velocities.

2.METHODOLOGY
2.1. Segmentation Procedure

The laser reading data consists of distances nmegdatween the sensor and the obstacle at fixadangsolution
(e.g.: 1°, 0.5°, etc.) and a quasi constant tinerval. So, it is very likely that two sensor dptants that are close may
be part of the same object. If these points rerwaather after some readings, one may concludetlibgtbelong to the
same object. On the other hand, if after some ngadiheir distance increases, one may concludettiegt do not
belong to the same object. Therefore, it is vergdnant to calibrate the algorithm in order to askequate threshold
values for the maximum distance between readirigse them into a single group that forms an object.

In our case, we used a SICK LMS 291 laser sensprovides a complete reading of 180° range upOim &s an
ordered sequence bfpoints £). Each point can be defined in Cartesian coordmét, y,) or polar €., a), that is:

P=(P, =(£’;)} n €[LN] @)

Following the representation presented in Fig. d iaraccordance with (1), a segme8j tan be described as:

S; = {(x;,y)) or(r,a;),i =k:n},wherel <k <n<N. 2)
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Figure 1: Representation of the laser readingssamike of its parameters used on the segmentati@eguoe. In this
figure, pi.1, pi, Pi+1 represent a sequence of laser readings.

The segmentation algorithm takes as input datanapleie sequence of laser readings (P) and delagisutput,
pairs of values that represent the start and erdadf segment detected. According to Premebid&Nands (2005) it is
possible to separate the segmentation method$antmain groups:

» Based on the distance between points (Point-Dist@#sed - PDBS);
» Based on the use of Kalman Filters (Kalman Filtas&l - KFB).

In this paper, we focused the use of Segmentati@ed on the distance between points. Basicallyalgparithms
belonging to this category has the following forif:D(r;, ri+1) > D;y THEN the points do not belong to the same
segment, ELSE the points are part of the same sagméhereD);,, is a threshold value for the maximum distance
allowed between two points belong for them be di@skas belonging to the same segment Bxd, ri.,) is the
Euclidean distance between two consecutive poiviigsh is given by the following equation:

D(ri' ri+1) = \/rl'z + .ri2+1 - 2TiTi+1 cosAa (3)

whereda is the angular resolution of the laser sensor.
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In the literature, one may find several methodsdute determineD;,,. Dietmayer et al. (2001) proposed the
following definition for this threshold value:

Dyim = Co + Cymin{r;, 141} (4)
Wherec, = /2(1 — cosAa) = D(r; ,1,4,)/r; » @dCo is a constant used in order to reduce noise.

Santos et al. (2003) included a new paramdier the angle between two consecutive readipgandp;.,, as
presented in Fig. 1) in the previous equation,roteo to reduce the segmentation dependence oristaance between
the sensor and the object detected. So, Eq. ¢heisged and the new representation folthgresulted in:

_ Cymin{ririz}
Dlim - CO + cotg(B)[cos(Aa/2)—sen(Aa/2)] (5)

On the other way, a simpler method to defipg was proposed by Lee (2001):

Ti—Tit+1
Ti+Tit1

Dlim = (6)
Finally, Borges and Aldon (2004) proposed a metbalted Adaptive Breakpoint Distance (ABD), whichssthe
threshold value as:

senAa
Dim =7 o T or (7

whereA is an auxiliary parameter arg is the variance that addresses the random behaf/itbe sequence of sensor
data points and the associated noise.

2.2. Obstacle detection

When it comes to obstacle detection, one may fdarlderature many ways to detect them in differ&mds of
environment based on laser sensor data. The bigbafienge in this procedure is the classificatidrthe detected
obstacles into different categories, for instarstatic and moving obstacles. For fixed sensors, sk is quite easy,
since the simple comparison between two consecugigdings can indicate if the objects are staticnoring ones.
However, the use of laser sensors onboard vehiotesng on roads becomes this task more complearder to solve
this problem it is necessary to relay on an as npreksise as possible localization procedure ofvigicle. So, the
vehicle must have embedded a set of sensors cothpggBPS, IMU, encoders, etc. Then, these databeitombined
by applying some data fusion algorithm in ordeestimate the vehicle position. As this is not theus of this work,
we decided that this subject will not be discusset.
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Figure 2: lllustration of the rules proposed by \Wamd Thorpe (2002) for obstacle detection.
Wang and Thorpe (2002) presented in their worklzstazle detection method based on two rules:
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* Rule#l: Object detection
From previous readings, we know that some spaoeti©ccupied (free space). If an object appears in
this space, this object should be moving. One nisyalize an example of this case in Fig. 2.

» Rule#2: Detection of objects that deviate
In Fig.2, based on two consecutive sensor readatgimet andt-1), we can not conclude that the object
B is moving, because it may be a new static obsstioat was hidden by the object C. However, we can
conclude that the object C is moving. In ordereally know if the object B is static, we need mtran
two consecutive sensor readings. The previousmgadiill help us to figure out the characteristi€she
objects.

2.3. Local Map

A mobile robot needs to know as much informatiorpassible about an environment in order to navigateis
environment. One way represent the environmentiddtee use of a grid representation and it waslyidescribed by
Elfes (1989). This technique is widely used in agiions of SLAM (Simultaneous Localization And Mapg),
however, in this project we will use it in orderdetect dynamic obstacles close to the robot. Esdlgnthe method
consists of creating a two-dimensional map of tdrenment. This map is represented in the forrgraf where each
cell contains a value that indicates the probabiliat an object exists or not in that position.tAs map is a discrete
representation of the environment, it is very intaot to choose the grid size. This parameter isiafbecause as small
is the grid value, the greater the computationak.cim addition to this, large grid values caussslof environment
features. So, it is necessary to find a balancevdssi the need of environment detailed representaind the
computational cost associated. It is also necessaiyighlight the need of a precise auto-localmatdf the map
features and the mobile robot.

2.4. Obstacle Tracking Procedure

When it comes to dynamic environments (e.g.: ulil@environments), it is not enough to detect abks, it is
also necessary to know their dynamic charactesiskimowing these characteristics, the mobile ratmsttrol system
can plan collision-free paths. Siegwart and Nouhishk(2004) present some methods that are usedaforgbanning.
Some methods act in a simplistic way and just l@nnhovement in a direction that leaves them cltsabstacles
without worrying about the obstacles they are mgviBut, for an efficient path planning is necesstrytake into
account the moving obstacles. This can be carrigdop monitoring the dynamic characteristics ofeunlt§ that are
around the vehicle. In order to obtain even mofigiefit paths, one can estimate the obstacle fugtates, and add this
information in the planning phase. So, the riskdfisions with obstacles decreases.

In urban-like environments it is quite common tbhstacles close to the vehicle sensors hide otterdles behind
them. In this situation, the vehicle navigationteys can become inefficient, disconsider hidden asfdss, and plan
unsafe paths. So, in this scenario, the use dckitig procedure that estimate the hidden obstatéts for a certain
time window is more than welcomed.

In our research, each detected obstacle is chamatteby the center of gravity of the occupied £@lérceived by
the laser sensor. As the laser provides us an amaent reading on two dimensions, each obstacleiresgtwo
coordinates for its position in space. As we ase ahterested in how the obstacles move, we nekddw the velocity
components ix andy. These characteristics are united and storedviector that determines the state of the obstacle,
as follows:

1_J)State = y (8)

For simplicity, from now on this vector will be negsented only by. The vector containing the coordinateandy
measurements will be represented by the vertdihe state vectors and measurement estimatedevitepresented,
respectively, by andzZ.

2.5. Kalman Filter

When it is necessary to predict future states @frsamic system based on noisy measurements, tmaeaidilter is
a widely used technique (Kalman, 1960). The filkerks recursively, i.e., it has the ability of ¢ad itself. So, it is
possible to solve problems by repeatedly procedbi@gutput of the same process. The Kalman filbeisists basically
of two steps. Firstly, an estimate is carried agdu on the dynamic characteristics of the systesadon the previous
step data. Then, it performs an update of the estilbased on data from a new measurement. It isssaxy to
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highlight that Kalman filters are recommended ofdy linear systems. If the system is not lineag tise of more
complex filters like the Extended Kalman Filter (EKor the Unscented Kalman Filter (UKF), is recoemaied.

In order to implement the Kalman filter it is nesas/ to adopt a dynamic model for the system irstioie. We
used the model presented in Kohler (1997). Thetansdescribing this model are linear, so we garlyathe Kalman
filter easily. So, the transition matrices of detertime and the covariance of noise are givereasgly by:

1 At 0 0 At3/2  At?/2 0 0
0 1 At2J2 At 0 0

Fan =1y o 10 AOt and QA = 0/ 0 At3/2 At?)2 ©)
0 0 0 1 0 0 At?/2 At

In the literature, it is possible to find other netglthat can be used. One of them is the constatiar velocity and
it produces a more accurate estimative of the mewerf vehicles while negotiating a curve. Howetke, system of
equations used in this model is non-linear, soaduld be necessary the use of the EKF in order édipt the vehicle
states. As the EKF is more complex and computafipmaore expensive when compared to the Kalmaerfilive
decided to keep the use of a simpler dynamic antegeneric model for the obstacles. So, the ewwiutf the
dynamic system can be described by the followingagégns:

x(t + At) = F(A)x(t) + u(t + At) (20)
z(t + At) = Hx(t + At) + w(t + At) (112)

where u represents the white noise processthe noise of the measuremdrtthe measurement matrix, that
performs the transformation from a state vecta measurement vector and is given by:

H=(p o 1 o a2

Here starts the prediction step of the Kalmanrfiltehere the state measured at the time intedtalwill be used to
produce a new estimate. In addition, the state rimwvee, P, and the innovation covariancgare also predicted. The
innovation matrix is based on the error betweenetftenated and measured data. So, the predicémnistcalculated
based on the following equations:

%(t + At) = F(AD)X(t) (13)
2(t 4+ At) = HX(t + At) + Q(At) (14)
P(t + At) = F(A)P(t)F(AL)T (15)
S(t + At) = HP(t + A)HT + R (16)

The matrixR represents the covariance of measurement noisé @&ndalculated multiplying the variance by the
identity matrix,R = Ig2. In order to improve the estimate done, a newmemsadings set is used. This is the updating
step of the Kalman filter. The innovation can bé&uglated as the difference between the new semsalimgs and the
estimated value carried out in the previous step il filter gain is obtained by using the covaci of the innovation
state that was estimated in the previous step. Koprediction step can be updated based on Hbafog equations:

v(t + At) = z(t + At) — Z2(t + At) 17)
W(t+ At) = P(t + A)HTS™I(t + At) (18)
R(t + At) = 2(t + At) + W(t + At)v(t + At) (19)
P(t+ At) = P(t + At) — W (t + A)S(t + ADOWT (¢t + At) (20)

2.6. Data Association

New laser sensor measures must be associated witrtigular track, in order to detect obstacle nmo&sts.
Yaakov and Fortmann (1988) described some methseld for data association in different conditionae@f these
methods is known as "Joint Probability Method". &lguit is applied when the data acquisition isriat out in crowd
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environments because it considers that sensortldatare in the same region not always belong ¢osime obstacle
that is being tracked.

Among all the methods presented in Yaakov and Famtm(1988), we considered that the most suitabéefon
urban-like environments is the "Nearest-Neighb@n8ard Filter" (NNSF). In our case, some hypothesae used to
apply the NNSF method:

e Only a limited quantity of detected obstacles amestdered at timée

* In most cases, the barriers are sufficiently distemm one to another;

» If there is any doubt about the data associatios system must continue monitoring the data acduire
order to make sure it is tracking the same obstacle

So, the system iteratively applies the NNSF andutates all distances between the tracked obstacléshe new
sensor readings. The distance is calculated ubmd/tahalanobis distance equatian, = vS~1vT. Thus, each track is
associated with new reading set that is closer #hare-defined threshold value.

2.7. Classification of Obstacles

To be able to monitor and predict obstacle movesjeme must classify them into different classes. iBis
possible to choose appropriate dynamic modelshfemt As the most actors of the traffic in urbarelégnvironments
are vehicles (cars, busses, bikes, etc.) and padestthe obstacles will be classified into thivee classes.

Taking into account the sensor data, one may ndhiat there are remarkable differences betweencheelind
pedestrian sizes. In all the readings in which petans were identified, they appeared most oftertva or three
readings data. This happened because the senghit gis approximately 0.5m, so it can detect ohéy pedestrian
legs. So, the obstacle classification can be chroigt by calculating the standard deviation of thading data that
belong to the same obstacle:

px = =3, x, and Hy = =¥, ¥ (21)

n<it

1 1
o’y = ~ Xz (ux — x;)? and oy = ~ iz (fy — yi)? (22)
where:x andy are the Cartesian coordinates of the reading afadaspecific obstacley is the quantity of reading data
that were associated with the obstacle during #wmmentation procedurg, is the mean value, and the standard
deviation of the reading data.

By calculating the standard deviation (Eq. 23), eeen compare it with predefined values (that wertaiobd
experimentally) in order to determine if the objech vehicle or a pedestrian.

Onorm = UXZ + UYZ (23)
3.RESULTS

The experimental tests were carried out using esir\tehicle, an adapted Fiat Stilo Dual Logic. Tteist vehicle
has as embedded sensors a set of laser scannéfsahd GPS. It is also possible to access the ottgraed other
vehicle data through the vehicle CAN network. lig.F8 a photo of the vehicle is presented. In tlisfiguration, 2
SICK LMS 291-S05 laser sensors were used in oglerdanitor the environment (one in the front of tedicle and the
other one, on its top). During the experimentsffigs article, we used only the data of the fromisee.

3.1. Segmentation Procedure

As previously described, after acquiring the ladata, it is necessary to carry out the segmentaitionedure in
order to select and group them into detected olesta&ach sensor reading is a set of 181 pointsanong the
distances between the sensor and the environmahirés detected. Initially the data is convertamfrpolar to
Cartesian coordinate system. Then, we assumedhbabrigin of this Cartesian coordinate systemnighe sensor
position, where the-axis is placed at 9Q(sensor local system), and thaxis, perpendicular to theaxis (at 180 in
the sensor local system). The next step is thetiee "Point-Distance-based" (PDB) method to idgnthich sensor
readings data belong to an object. We choose ththad because it is very simple to implement. Tdsailts obtained
were satisfactory, taking into account that différebjects were mostly well distinguished. Figurprdsents a reading
of the laser and the associated segmentation puoeedsult. One may observe in Fig.4-b that eaciiacke detected is
represented by a different color.
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Figure 3: Experimental test vehicle used — SENA&tqwww.eesc.usp.br/sena).

The drawback of this method is the need of a thalestiistance value between the laser data to segimem. If one
chooses a value that is too large, two distincectsj can be fused as one. On the other hand, ifalue is too small,
the same object can be divided into two or moredbj Due to this, the selection of this threshaltlie becomes a
trials and error task and the result is very aéfddby the kind of the robot/vehicle operating eoriment. Fig.5 shows
the results obtained for two different trials. hetfirst one (Fig. 5-a) the segmentation algorifiased several objects
into a single one, and in the second one, (Fig, B-Bingle object was divided into two distincesn
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Figure 4: Results obtained during the segmentgtfoness. In (a): environment data acquired byabkerlsensor (the
blue dots represent the obstacles detected). ith@putput of the segmentation procedure algorifbach
obstacle is represented by a different color -gtai, a vehicle that was detected).

3.2. Obstacle Detection Procedure

In order to detect the dynamic characteristichefdbstacles, we carried out comparisons betweerttnwsecutive
laser readings. As they are separated by a knawe tinterval, it is possible to detect possible nmeets of the
obstacles and divide them into two classes, staticdynamic obstacles. The algorithm calculateslistance between
the present and the previous reading data and atealuhe values obtained based on a threshold.flaeset of
readings is within the limit of displacement, it psobably a static obstacle, if not, a moving otistagdynamic).
However, there are situations where different paftdhe same object overlap in two consecutive ireg giving the
false idea that they are stopped (e.g.: when @sodetected moving perpendicularly to the sensinjs problem was
solved by checking the previous classes of thestaoles. If they were previously classified as mgwbstacles, they
are classified as moving obstacles again.
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Figure 5: Results obtained during the segmentgtioness for two different values of the threshasdashce between
the laser data. In (a): the segmentation algorftisad several objects into a single one (greenidside the black
circle). In (b): the segmentation algorithm dividedingle object into two distinct ones (blue amalet dots inside

the black circle).

However, if no similarity between the data in tleenparison phase is found, we can not guarantedhbatbject is
moving. This can happen because the object may lbeee hidden by others obstacles on the previarsssar it could
be out of the sensor range. In this case, we useti@pt that determines a region of free aredefirtst reading. This
area corresponds to a free region between the/velhitle and obstacles. If an object on the seceading ) was not
observed in the first oné-{), but it is contained in the free area of thetfieading, we can conclude that the object is
moving. Aiming to facilitate the comparison of teensor readings, we used a local map. The mapasigechosen
based on the sensor maximum range used. In ourimgrds we adopted a 60m maximum range, so we aavwap
size of 60m x 60m. The map was divided into celt&ls enough, so they could produce a good disa#dia of the
environment, without becoming too computationalipensive (each cell has 0.2 m x 0.2 m). Accordimghese
dimensions, the local map is composed of 90,008.dehch cell has a value between 0 and 20. Theehig this value,
the higher is the probability of the cell being opied. Another reason for building a local mapasrake easer the
integration of the trackers data with a trajectolignner that is under development at our lab.

The algorithm results for obstacle detection amdsification were encouraging. However, it is palssio optimize
the algorithm in order to filter false classifiaais. Fig. 6 presents results of two different sdesaln this figure, red
dots represent sensor readings that were classifidzelonging to moving objects, and the blue oagdelonging to
static objects. In the first situation, a moving isadetected, and the second a pedestrian istddtec

3.3. Tracking Obstacles and Predicting their Future States

Once it is possible to track the moving obstacless@nt around the robot/vehicle, it is possiblentmitor them.
This can be done by applying the Kalman Filter. B first sensor reading, because there is noiquevdata, all
detected obstacles are set as new trackers. Tiad gtate vector is given by the measured posaiod all velocities are
set as null. The covariance matrices are alsalizid with convenient initial values. Each trackas an associated
variable that stores the quantity of scans in witittas not been updated by new sensor readingsv@hable is called
unseen). When a new tracker is inserted or updated, vhisable is reset as null. In Fig. 7 one may vizgathe
detection of one pedestrians (the symbols usetisnfigure are presented in Tab. 1). The trackgorithm is briefly

described as follows:

1: FOR each tracker DO:

2: Estimate the state
3: Calculate the Mahalanobis distance fonalls

4: Check the smallest Mahalanobis distange (
5: IF m<limit THEN:

6: Update the tracker with new data
7 unseen =0

8: ELSE:
9: unseen =unseen + 1
10: IF no new measurements of a tracker foremor

than 1 sec:

11: Deletes the tracker

12: FOR each new measurement without
correspondence:

13: Creates new tracker
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Figure 6: Results of the algorithm for obstaclesdgbn.

Table 1. Description of the symbols used in figore

Symbol Description
o Tracker being seen
@ unseen Tracker
:_,:/ Obstacle Speed
N Scan data
Predicted Uncertainty

One can observe in this figure that the objecttimsiuncertainty is small while it is being deteattey the sensor.
When it is hidden by another obstacle or it leaessensor range area (Fig. 7-b), the uncertaimtgeases until the
object is once more detected or it keeps out ofseresor range for more than 1 sec. In Fig. 7-lja$ possible to
estimate the position and velocity of the pedestei@en while it was not detected by the laser genso

4. CONCLUSIONS

In this work we presented some of the key techrigoe segmentation, detection, monitoring, and jgtexh of
obstacle position and velocity. The segmentatiarc@dure was implemented based on the distanceséetpoints
method (PDB). The results were satisfactory and immear future we plan to test the method based aiman filter
(KFB) in order to compare both techniques. Whetoiines to obstacle detection, the algorithm thainagemented
compares two consecutive scans. We concluded tthvedis efficient, but there are still cases wherdidt not work
properly. For the purpose of solving this issuenap site was created to improve the obstacle @ilzesdn into the
mobile and static classes. The use of a visioreasystould also help the algorithm to filter falsebite obstacles.

Reliable data from the obstacle detection systearw#ial in order to perform the prediction of olij@eotions step.
The obstacle detector algorithm ran efficiently trafsthe time, but some false classifications waneduced due to the
presence of tall grasses that were swinging beaafube wing during the experiment. Once again, ke of a vision
system can solve this problem and filter theselt®sthe use of the Kalman Filter to predict thstacle future states
produced good results. Nevertheless, it is possiblenprove the prediction using more complex dyitamodels that
can include motorcycles and bicycles. The mairedffice between them is related to their speedwll¥iit is crucial
to highlight the importance of detecting, monitgxiand predicting the movements of dynamic obssadethe vehicle
autonomous navigator. Based on these data, thensysdn figure out the best paths that would avoltisons, and
increase the traffic safety.
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Figure 7: Tracking Obstacles and Predicting thaiufe States. In (a) a pedestrian is tracked inbidesensor range,
and in (b), the tracker is kept even while the &tk is out of the sensor range.
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