
EVALUATION OF ESTIMATES OF EFFORT TO DEVELOP APPLICATIONS WITH SUPERVISORY
SYSTEM
Renato Fernandez, renato@cefetsp.br
IFSP - Federal Institute of Education, Science and Technology of São Paulo
São Paulo – Brasil

Valesca Alves Correa, valesca.correa @ unitau.com.br
Luiz Eduardo Nunes Nicollini do Patrocínio, luiz@unitau.br
UNITAU - University of Taubaté
São Paulo – Brasil

 The determination of the effort required to develop a project is the key factor in its approval and success. The effort
includes not only the time and cost required for the development or maintenance of software projects, but also the
number of people and hours required that each one must devote to the project. Efficient estimates allows the
verification of the viability of the project, preparation of technical and commercial proposals, the production of
detailed plans and schedules, and effective monitoring of the project. The risk measures have important roles in the
development process of a project. Therefore, the estimates are the main activities of planning for the development of a
software project. The Function Point Analysis (FPA) is a metric that allows a planning more realistic of the resource
required. Based on a preliminary survey of the scope and structure of the application, FPA allows a reliable estimate,
giving a preview of deadlines, costs and people needed for the development of the project. With the application of APF
in automation process that involve supervisory systems, it will be possible for engineers to diagnose the necessary time
and costs in the implementation of automated processes allowing for better planning. This study aims at applying the
technique of algorithmic model of Function Point Analysis (FPA) to determine the effort required in developping
supervisory systems using the LabVIEW application, where several parameters are applied to quantify the estimation of
effort at various levels application mainly detecting the most complex elements that influence the project. As results we
expected to get a major factor in measuring risk and still provide meaningful information to support decision that
makes work more clear in terms of time, effort and cost, respecting their priorities.
 Keywords: Function Point Analysis, Supervisory Systems, LabVIEW.

1. INTRODUCTION

In many industrial systems still exist equipment that should be fully automated, but for reasons of their own

production dynamics are used manually. These situations cause the loss of productivity that is erroneously balanced by
continuity or uninterrupted of the production process.

Software metrics are quantitative standards for measures of various aspects of a project or software product, and
constitutes a powerful management tool, contributing to the elaboration of cost and time estimates more accurate and
for the establishment of plausible targets, facilitating the process of decision and subsequent calculations of productivity
and quality.

2. FUNCTION POINT ANALYSIS

The Function Point Analysis (FPA) is a technique for measuring the functionality provided by an application from

the user’s view. Function point is the unit of measure of this technique that aims to make the measurement independent
of the technology used to build the application, ie, the FPA measure what the application does, not how it will be built
(Vazques, Simões and Albert, 2010).

Therefore, the measurement process (also called count of function point) is based on a standardized assessment of
the logical requirements of the user. This standard procedure is described by IFPUG (International Function Point
Users Group) in its Counting Practices Manual.

The main techniques for estimating software development projects assume that the size of software is an important
vector for determining the effort for its construction. Therefore, know the size is one of the first steps of the process of
estimation of effort, time and cost.

Therefore, it is important to note that function points do not directly measure effort, productivity or cost. It is a
measure of a functional size of software. This size, together with other variables, it might be used to derive
productivity, to estimate effort and cost of the software project.

According to Andrade (2004), an application is a set of functions or business activities, which are divided into the
following groups or types:

� Internal Logical File (ILF):
Represent each logical grouping of data that can be part of a database or be a conventional file, whose maintenance

is performed by the application itself.
The complexity of an internal logical file is calculated from the number of logical records referenced (a subgroup of

data elements, recognized by the user, within an internal logical file) and from the amount of referenced data (a field
recognized by the user , which is present in an internal logical file), using the counting rules and the definition of
complexity.

� External Interface File (EIF):
Represents each file referenced by the user used by the application, but resides outside the system boundary, ie the

maintenance is done from another application.
The complexity of an external interface file is calculated from the number of logical records referenced (a subgroup

of data elements, recognized by the user, within an external interface file) and from the amount of referenced data (a
field, recognized by the user, who is present in an external interface file), using the counting rules and the definition of
complexity.

� External Input (EI):
Represents each input coming directly from the user through a logical process only, with the aim of inserting,

modify or delete data from internal logical files.
The complexity of an external input is calculated from the number of logical files referenced (an internal logical file

or an external interface read or maintained by a type of function) and from the amount of referenced data (a single field
not recursive identified by the user, kept in an internal logical file for external input), using the counting rules and the
definition of complexity.

� External Output (EO):
Represent an elementary process that sends data or control information outside the boundary of the application. The

main objective is to present information to a user through a logical process and not just a simple data recovery. The
processing logic must contain at least one mathematical formula or calculation, or create derived data. It can also be
said that represent the application activities (processes) which results in the extraction of data from the application.

The complexity of an external output is calculated from the number of logical files referenced (a file read by the
processing logic of the external output) and from the amount of referenced data (a field not recursive identified by the
user, that appears in a external output), using the counting rules and the definition of complexity.

� External Inquiry (EI):
Represent an elementary process that sends data or control information outside the boundary of the application. The

main objective is to present information to the user through the data recovery. The processing logic does not contains
mathematical formulas or calculations, and does not create derived data. It can also be said that is an activity that,
through an online requisition data generates an immediate response.

The complexity of an external inquiry is calculated from the number of logical files and the amount of referenced
data (a field not recursive identified by the user, that appears in a external output).

Should be used only the most complex found between the pieces of input and output.
The functions contribute to the calculation of Function Points based on quantity (number of functions) and

functional complexity assigned to each one.
The number of FP (function points) of an application is determined into three phases of evaluation:
� First Phase (Unadjusted Function Points):

Represent the specific and measurable functions of the business, provided to the user by application;
� Second Phase (Adjustment Factor):

Represent the general functionality provided to the user by application;
� Third Phase (Adjusted Function Points):

Represents the application of the Adjustment Factor over the calculated result in the first phase.

 2.1. Unadjusted Function Points or Rough Function Points Calculation

A specific function of the user in an application is evaluated in terms of what is provided by the application and not

as is provided. Only requested components and visible to the user are counted.
Each function, through its own criteria, should be classified according to their relative functional complexity, in

Simple, Average or Complex.
For each function will be assigned a number of points according to their type and relative functional complexity

(Andrade, 2004) as shown in “Tab. 1”.

Table 1. Data for calculation of rough function points

Relative Functional Complexity
Function Type

Simple Average Complex
Internal Logical File (ILF) 7 10 15
External Interface File (EIF) 5 7 10
External Input (EI) 3 4 6
External Output (EO) 4 5 7
External Inquiry (EQ) 3 4 6

2.2 Calculation of Adjustment Factor
According to Mecenas (2009), the value of the Adjustment Factor is calculated from 14 general characteristics of the

system, which allows a general evaluation of the application functionality.
The general characteristics of a system are:
� Data Communication: When resources are used for data communication to the sending or receiving data and

control information used by the application;
� Distributed Processing: When the application predict the distribution of data or processing between multiple

CPUs installation;
� Performance: This characteristics identifies the performance objectives of the application, established and

approved by the user, which have influenced (or will influence) the design, development, deployment and
application support;

� Use of Equipment: Represents the need to make special considerations in systems architecture for the
configuration of the equipment has not degradation;

� Transaction Volume: Measures the impact of the volume of transactions on application design;
� Data Entry "online": Measures the volume of transactions are interactive data entry;
� Efficiency of the End User: Examines the functions "online" designed and available to the end-user efficiency;
� Update on-line ": Check the volume of internal logical files that have on-line maintenance and the impact of

the process of data recovery;
� Complex Processing: Considers the impact on application design, caused by the type of processing complexity;
� Code Reuse: Check if the application and its code were specifically engineered and designed to be reused in

other applications;
� Facilities of Implementation: Considers the effort used to meet the requirements of data conversion to

application deployment;
� Facility Operations: Check the application design and the requirements for startup, "backup” and recovery with

the objective of minimizing the manual operator intervention;
� Multiple Locations: When the application is specifically designed and developed to be installed in multiple

locations or multiple organizations;
� Facilities Change: When the application requirements predict the design and development of mechanisms to

facilitate operational changes, such as: capacity to issue reports generic, flexible queries or changes in the
control data of the business (parameterization)

According to Hazan (2009), for each characteristic will be assigned a weight ranging from 0 (zero) to 5 (five),

according to the level of impact on the application, observing the criteria established for each characteristic, where: 0
(zero) : No influence, 1 (one): Minimal Influence, 2 (two): Moderate Influence, 3 (three): Average Influence, 4 (four):
Significant Influence and five (5): Great Influence.

The level of general influence is obtained by summing the level of influence of each characteristic and the
Adjustment Factor which is obtained by “Eq. (1)”.

Adjustment Factor = 0.65 + (Level of General Influence * 0.01) (1)

The adjustment factor is applied above the Rough Function Points (PFB) to allow the calculation of Adjusted

Function Points (PFA). This value can range from 0.65 to 1.35, because the adjustment factor, when applied to the
unadjusted function points, can produce a variation of plus or minus 35% and each point assigned to the level of
influence affects the final result by 1%.

2.3 Calculating Adjusted Function Points

The Total Function Points (PFA) of the application will be found by multiplication of the number of Unadjusted

Function Points (PFB) by the Adjustment Factor (FA), according to the “Eq. (2)”.

PFA = PFB = x FA (2)

The process of estimating software projects involves four activities, and it is necessary to estimate the size of the

product being developed, the effort to be employed for its implementation, the project duration and cost to the
organization.

After analyzing the requirements to ensure product quality and size of software project, the next step is to calculate
the effort needed and then derive estimates of time and costs based on size estimates. Thus, by calculation the size of
the project, it is possible to calculate all the other estimates, to identify the necessity of financial and personnel
resources.

3. SUPERVISORY SYSTEM

The Supervisory Systems allow to monitor and to track the information from a production process or physical

installation. The information are collected by data acquisition equipment and then manipulated, analyzed, stored and
later presented to the user. These systems are also called SCADA (Supervisory Control and Data Acquisition).

Currently, industrial automation systems using communication and computing technologies to automate the
monitoring and control of industrial processes, making data collection in complex environments, possibly
geographically dispersed, and its presentation so friendly for the operator, with elaborate graphics resources (man-
machine interface) and multimedia content.

The physical components of a system of supervision can be summarized in simplified form, in: sensors and
actuators, communication network, remote stations (acquisition / control) and central monitoring system (computational
system SCADA).

The process of control and data acquisition begins in the remote stations, PLC (Programmable Logic Controllers)
and RTU (Remote Terminal Units), with the reading of the current values of the devices that are linked to it and their
respective control. The PLC’s and RTU’s are specific computational units, used in manufacturing installation (or any
other type of installation that you want to monitor) for the functionality to read input, perform calculations or controls,
and update outputs. The difference between the PLC’s and RTU’s is that the PLC’s have more flexibility in
programming language and control inputs and outputs, and the RTU’s have a more distributed architecture between the
central processing unit and cards of input and output, with greater precision and sequencing of events.

The communication network is the platform through which information flow from PLC’s / RTU’s for SCADA
system and taking into account the system requirements and distance to cover, can be implemented via Ethernet cables,
fiber optics, dial-up lines, dedicated lines, radio modems, etc.

The central monitoring stations are the main units of SCADA systems, being responsible for collecting the
information generated by remote stations and act in accordance with the detected events, which may be centralized on a
single computer or distributed over a computer network, to enable sharing of information collected, according as “Fig
1”. (Daneels and Salter, 2000).

Figure 1. Supervision and Control System

4. SOFTWARE LABVIEW

The software LabVIEW is a application developed by National Instruments based in language G (graphical

programming language or visual) that uses icons instead of text to create applications. This type of programming is
based on the flow of data that define the execution of such data.

The LabVIEW allows creating test and measurement application, data acquisition, instrument control, data logging,
measurement analysis and report generation, besides executable applications and shared libraries.

The programs in LabVIEW are called virtual instruments (VI - Virtual Instruments). The VI’s contain three main
components: the front panel, block diagram and the panel of icons and connectors. The “Figure 2” shows a
representation of the computing environment of LabVIEW software.

Figure 2. Front Panel and Block Diagram of LabVIEW software

The advantages of using this computing environment are summarized in the diversity of drivers and support for
access to different peripherals/instruments and hardware, many library functions such as: Data Acquisition - data
acquisition, analog and digital inputs and outputs; Signal Generation - periodic signal generation and other signals;
Mathematics - mathematical functions and instructions; Statistics - statistics functions and instructions; Signal
Conditioning ; Analisys (Velosa, 2009).

 5. RESULTS

With he goal of using the APF methodology for estimating the size of a software, will be considered an application
shown by Lopes (2007), concerning the development of a Supervisory System using LabVIEW Software for
Acquisition, Processing, Display of Signals and Storage Signals of a Power Mini System, which we evaluated the
following interfaces: Simultaneous Measurements, Mini System State and Virtual Instrumentation, according as Block
Diagram of “Fig 3”.

Figure 3. Block Diagram of Mini System

The inputs and outputs for the three interfaces evaluated will be analyzed in “Tab. 2, 3 and 4”:

 Table 3. Identification of the components of input and output for Simultaneous Mini System State interface

Mini System State

 Inputs 4 keys

 Outputs 16 images to represent the states

 Table 2. Identification of the components of input and output for Simultaneous Measurements interface

Simultaneous Measurements
 Inputs 1000 samples

 3 values of voltages at the generator output

 3 values of current in Transmission Line

 3 values of voltage values at the end of Transmission Line

 1 mini system frequency (in Hertz) (mathematical calculations)

 1 value of active power value (mathematical calculations)

 1 value of reactive power (mathematical calculations)

 1 value of apparent power (mathematical calculations)

 Outputs

 1 power factor (mathematical calculations)

 Table 4. Identification of the components of input and output for Virtual Instrumentation interface

Virtual Instrumentation

 1 menu of mini system

 1 phasor diagram

 1 virtual oscilloscope

 Inputs

 1 virtual synchronoscope

 1 voltage signal at the beginning of the Transmission Line

 1 voltage signal at the end of the Transmission Line

 1 current signal

 1 waveform of the voltage signal

 1 phasor diagram of the voltage signal

 1 value gap between the current signal and voltage signal

 1 number of voltage cycles

 1 number of current cycles

 1 multiplicative factor to the current signal

 1 digital filter

 1 sequence of different phase

 1 sequence of phase equal

 3 phasor voltage at the output of the Transmission Line

 Outputs

 3 voltage phasors at the dealership

Once defined characteristics of each proposed interface for supervision, the “Tab. 5” shows the identification of

complexity for data entry through the initial screen of Mini System, presented in the Block Diagram of “Fig 3”:

Table 5. Identification of complexity for external input (initial screen)

The “Table 6” shows the quantities of External Inputs and their Complexities found for each proposed interface:

Elementary Data Referenced
Logical Records Referenced

01 until 04 05 until 15 16 or more
00 ou 01 Simple Simple Average
02 Simple Average Complex
03 or more Average Complex Complex

Table 6. Values of complexity for each external input for three proposed interfaces (initial screen)

Interface Quantities of External Inputs (initial
screen)

Complexity

Simultaneous Measurements 1 Simple

M ini System State 4 Simple

Virtual Instrumentation 4 Simple

Similarly “Tab. 7” shows the values of reference for the calculation of complexity in relation to external output.

Table 7. Identification of complexity for external output (mathematical calculations)

The “Table 8” shows the quantities of External Outputs and their Complexities found for each proposed interface:

Table 8. Values of complexity for external output (mathematical calculations)

Interface Quantities of

External
Outputs

Complexity

Simultaneous Measurements 5 Simple

M ini System State 0 Simple

Virtual Instrumentation 0 Simple

Next are considered in “Tab. 9” the values of reference for the identification of complexity for external inquiry:

Table 9. Identification of complexity for external inquiry (output part)

The “Table 10” shows the quantities of External Inquiry and their Complexities in relation to outputs for each

interface:

Table 10. Values of complexity for external inquiry – output part

Interface Quantities of
External Inquiry

Complexity

Simultaneous Measurements 09 Simple

M ini System State 16 Simple

Virtual Instrumentation 18 Simple

According to reference values of “Tab. 1”, are show below in “Tab. 11”, the calculated values of functional

complexity for each interface:

Elementary Data Referenced
Logical Records Referenced

01 until 05 06 until 19 20 or more
00 or 01 Simple Simple Average
02 or 03 Simple Average Complex
04 or more Average Complex Complex

Elementary Data Referenced
Logical Records Referenced

01 until 05 06 until 19 20 or more
00 or 01 Simple Simple Average
02 or 03 Simple Average Complex

04 or more Average Complex Complex

Table 11. Values of Functional Complexity

Interface External Input External
Output

External
Inquiry

Realtive
Functional
Complexity

Simultaneous Measurements Simple / 3 Simple / 4 Simple / 3 10

M ini System State Simple / 3 Simple / 4 Simple / 3 10

Virtual Instrumentation Simple / 3 Simple / 4 Simple /3 10

Although there are 14 general characteristics of the system, as previously mentioned in item Calculation of

Adjustment Factor, Will be demonstrated Bellow in Table 12 the general characteristics inherent in the system of
Acquisition, Processing, Display and Storage Signs of a Mini Power System and its respective levels of influence since
the characteristics concerning Distributed Processing, Use of Equipment, Data Entry “On-Line”, Update “On-Line”,
Code Reuse, Multiple Locations and Facilities of Change do not make part of the scope of the systems evaluated. The
sum of degree of Influence of the characteristics, listed below, affect the effort required to develop the application.

As each characteristic can have a degree of influence varying from 0 to 5, the Total Degree of Influence (GIT) can
vary from 0 to 70 (14 * 0 until 14 * 5).

Table 12. General characteristics of the system and levels of influence

The calculation of the Adjustment Factor (FAT) Will be obtained from the Total Degree of Influence of the

characteristics of application (GIT) using the “Eq. (3)”.

FAT = 1,35 + (0,01 * GIT) = 1,63 (3)

As the Total Degree of Influence (GIT) varies from 0 to 70, the Adjustment Factor (FAT) varies from 0.65 to 1.35,

since the adjustment factor, when applied to the unadjusted functions points, can produce a variation about 35% and
each point assigned to the level of influence affects the final resulting by 1%.

The adjustment factor is applied to the rough function points to allow the calculation of adjusted function points.

The “Table 13” shows the reference values for calculating the total of rough function points:

Table 13. Level of complexity for calculation of the total rough function points

Complexity File Interface Input Output Query
Simple 7 5 3 4 3
Average 10 7 4 5 4
Complex 15 10 6 7 6

Considering the weights shown in “Tab. 13”, the quantities of inputs shown in “Tab. 6”, the quantities of output data

shown in “Tab. 8” and the quantities of inquiry shown in “Tab. 10”, the rough function points are presented in “Tab.
14” for each interface evaluated.

Influence Level
Characteristics

None [0] Minimum [1] Moderate [2] Average [3] Significant [4] Greate [5]
Data Communication 4
Performance 5
Transaction Volume 3
Efficiency of the end user 5
Complex Processing 3
Facilities of implementation 3
Facility operations 5

Total degree of influence (GIT) 28

 Table 14. Total of Rough Function Points for each interface

Interface Inputs Outputs Queries Rough Function Points

Simultaneous Measurements Simple 1 / 03 Simple 5 / 20 Simple 9 / 27 50

M ini System State Simple 4 / 12 Simple 0 / 00 Simple 16 / 48 60

Virtual Instrumentation Simple 4 / 12 Simple 0 / 00 Simple 18 / 54 66

The determination of total adjusted function points, which reflects the size of the application considering the

technical characteristics that affect the project and implementation, is determined by using of the “Eq. (4)”.

PFA = PFB * = FAT (4)

Where:
PFA = Total of Adjusted Function Points PFB = Total of Rough Function Points FAT = Adjustment Factor

“Table 15” shows the calculated values for each interface of the total adjusted function points:

Table 15. Total Adjusted Function Points for each interface

 Interface PFA

Simultaneous Measurements 81,50

M ini System State 97,80

Virtual Instrumentation 107.58

It as considered an adjustment of 35%, because although the used functions are unique to the LabVIEW software,

the amount of functions is great for the development of interfaces, according as “Fig 3” .

The effort to build each Function Point is measured in man.hour per function point, representing the Productivity
Index (IPD) of installation as shown in “Tab. 16”, which reflects the IPD depending on the technology used.

Table 16. Productivity Index

Tehcnology IPD
Third Generation Languages 12 until 16
Fourth Generation Languages and relational environment 8 until 12
Application Generators 4 until 8

For calculation of Resources in man.hour, is used the “Eq. (5)”.

REH = PFA * IPD (5)

Where:
REH = Estimated resources in man.hour PFA = Adjusted Function Points IPD = Productivity Index

Below are shows in “Tab. 17” the calculated values for each model, considering IPD equal to four, due to the

amount of functions used in LabVIEW software for the development of the evaluated interfaces of mini mini system:

Table 17. Human.Hour Resources for each interface

Interface REH
Simultaneous Measurements 326,00

M ini System State 391,20

Virtual Instrumentation 430,32

For calculation of Estimated Resources in Human.Month the “Eq. (6)” is used.

REM = REH / 120 (6)

Where:
REM = Estimated Resources in Human.Month REH = Estimated Resources in Human.Hour
120 = Average quantity of hours in a month

It is considered that a resource devotes effectively six hours per day, and 20 days per month to the project.

The “Table 18” shows the values of estimated resources in human.month for each interface:

Table 18. Human.Month Resources for each interface

Interface REM
Simultaneous Measurements 2,72

M ini System State 3,26

Virtual Instrumentation 3,59

Below will be determined the best period (PZO), ie, the ideal period to develop the application, according to “Eq.

(7)”.

PZO = 2,5 * REM (7)

Where:
PZO = Best period in months REM = Estimated Resources in Human.Month

The “Table 19” shows the best periods calculated for each proposed interface:

Table 19. Best periods for each interface

Interface PZO
Simultaneous Measurements 6,80

M ini System State 8,15

Virtual Instrumentation 8,98

6. CONCLUSION

It was concluded that with the application of PFA in automation processes that involve supervisory systems, it will
be possible to engineers, to diagnose the necessary time and the costs in the implementation of automated processes,
allowing for better planning.

7. REFERENCES

Andrade, E L P., 2004. Pontos de Casos de Uso e pontos de Função na Gestão de Estimativa de Software Orientado a
Objetos. Dissertação de Mestrado, Universidade Católica de Brasília.

Daneels, A; Salter, W., 2000. What is SCADA? CERN - European Organization for Nuclear Research, CNL-2000-003,
Vol. XXXV, issue no 3.

Hazan, C., 2009. Análise de Pontos de Função - Uma aplicação nas estimativas de tamanho de Projetos de Software.
Engenharia de Software Magazine. Rio de Janeiro, n. 02, p. 25-31.

IFPUG, 2010. Function Point Counting Practices Manual: Release 4.3. International Function Point Users Group.

Lopes, V J S., 2007. Instrumentação Virtual Aplicada ao Ensino Experimental de Engenharia Elétrica, Dissertação de
Mestrado, Universidade de São Paulo.

Mecenas, I., 2009. Análise de Pontos de Função: Estudo Teórico, Crítico e Prático. Rio de Janeiro: Alta Books.

Vazquez, C E, Simões, G S, Albert , M., 2010. Análise de Pontos de Função: Medição, Estimativas e Gerenciamento
de Projetos de Software, São Paulo, Ed. Érica, 2010.

Velosa, J E C., 2009. Controlo Automático de um Interferómetro para Monitorização e Caracterização de Sensores
Interferómetricos. Dissertação de Mestrado, Universidade da Madeira, Portugal.

