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Abstract. Initially it is made a general formulation of the convection forced transient in a completely developed flow 

and in thermal development, with the use of a periodic temporal function in the entrance condition and a boundary 

layer that presents convection in the walls. The Generalized Integral Transform Technique is used to find a complete 

solution of equation of the energy problem, considering the term of axial diffusion. Next, it is solved the problem 

through a  filter, and it is done an analysis of the complete solution of the original problem, supplying thus, a solution 

of low cost that presents satisfactory results when compared to results that already exist in literature. The 

computational code developed through the MATHEMATICA system, allows refined analysis of the results. 
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1. INTRODUCTION  

 
In engineering, heating and cooling fluids that flow inside conduits are among the most important processes of heat 

transfer. It may be noted that the solutions found in this study may be useful in the design of any machine or 
components which are present on the forced convection phenomena inside, especially in so called regions of entry 
thermal and hydrodynamic fluid. . Therefore, electronic components, condensers, evaporators, heat exchangers, among 
others are examples of the possible usefulness of this work. More than that, the growing need for miniaturization and 
optimization of these, has become a global necessity. Moreover, the motivation of this study, far from being a purely 
academic exercise, is due to an immediate practical necessity which is used in the fields of nuclear energy, transport 
processes involving chemical reactions, spatial and automatic control.  

Another important factor in this study is the growing need for exact solutions to engineering problems, increasingly 
complex, in a short interval of time. For this reason, the theoretical approach has been gaining ground on trial and the 
traditional analytic methods. This occurs because the first trial is usually delayed, beyond the fact of being very 
expensive because for each experiment have been new spending such as: use, modify the prototype, among others, 
where all of this is due to a possible change in the problem under review, the second because traditional analytic 
methods have certain limitations which lowers the difficulty by mathematical simplifications, which sometimes make 
the models too far from real cases having utility in terms of academic or didactic, but rarely objective practical 
application, and finally, and most important, because with the development of digital computers with processing speeds 
getting bigger, has advanced significantly in the simulation of problems in fluid mechanics and heat transfer, thus 
enabling a lower cost and minimizing time to work . 

The advancement of numerical simulation techniques has allowed the opening of new directions in research on 
convection, given that the amount of movement of energy in fluids is modeled by complicated equations, usually 
nonlinear, which had only numerical solutions. As an example, one can cite the equations of boundary layer, which is a 
group of convective-diffusive equations, derived from simplifications made in the Navier-Stokes equations, when the 
terms are neglected longitudinal diffusion and the pressure gradient across the main flow . These simplifications do not 
allow a full reproduction of reality for high Reynolds numbers and points relatively far from the duct entrance. 

The major drawback of numerical methods is due to the fact that a natural loss of physical sensitivity of the 
proposed problem, besides providing a high computational cost, considering that to achieve a good accuracy is need of 
a mesh with a high number of points , thus impeding certain solutions. 

It has been used to Generalized Integral Transform Technique, which is a hybrid method that has analytical – 
numerical solution. The basic idea is to transform a system of partial differential equations in a system of ordinary 
differential equations by the elimination of spatial dependence, with an advantage of producing a more accurate and 
more economical compared to numerical methods, and does not require mesh generation and to allow a control on the 
relative error of the results, which is established a priori and automatically controlled. 

The basic steps for the implementation of the Generalized Integral Transform Technique are: 
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a) Choose an ideal auxiliary problem, which contains much information possible regarding the original problem. 
b) From an auxiliary problem can be determined by the pair of equations Inverse Transform, which allows for   
connection between the auxiliary problem and the main problem. 
c) The potential helper and the pair transformed - allow inverse transform the system of partial differential equation 
in an ordinary system equations through operators that allow the elimination of one or more spatial variables. 
d) Determining the system of coupled ordinary differential equations, after the truncation of the infinite series in an 
order large enough for the desired precision, using routines available in numerical scientific libraries, resulting in 
potential processed. 
e) From the transformed potential, obtained in solving the system of equations, is the original potential rescued by 
the inverse formula. 
The periodic forced convection problem is presented in the literature with different approaches. The effects of a 

spatially variable velocity profile for fully developed laminar flow were accounted for by Cotta and Özisik (1986), 
where the GITT was employed to provide analytical solutions. In another work, Cotta et al. (1987) solved the slug flow 
problem, including walls conjugation, for circular tube and the parallel plates channel. 

This work can be seen in the context of problems of forced convection transient and is considered an extension of 
the work done by Cotta (1994), Gondim (1997), Cavalcanti (2000), Santos (2004) and other. 
 
2. FORMULATION OF THE PROBLEM 
 

It is considered a hydrodynamically developed laminar flow inside a parallel plate duct, subjected to forced 
convection, as shown in Fig. 1. Considerations: Incompressible fluid, the physical properties constant, physical effects 
of viscous dissipation, negligible convection and combination with walls, and a temporal variation of the inlet 
temperature is the periodic type. 
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Figure 1 - Representation of the problem 

 

The problem is mathematically defined by the energy equation: 
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With initial condition and boundary conditions given by: 
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3.   ADIMENSIONAMENT PROBLEM 
 

For the proposed problem, are considered the following dimensionless groups: 
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By using the dimensionless groups defined as applying to Eq. (1) to Eq. (6) results in: 
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4.   COMPLETE SOLUTION FOR TRANSIENT FORCED CONVECTION THROUGH A FILTER 

 
We used the Integral Transformation Process for solution of Eq. (3), simply operating with a filter. In order to 

accelerate the convergence of expansions in eigenfunctions unfolds the potential T(x, y, t) of the Eq. (8), as follows: 

y)F(x, + t)y,(x, = t)y,T(x, θ                                                                                                                                   (14) 

 
where F(x, y), solving a problem is convection, which acts as a filter to homogenize the boundary conditions of the 
original problem, and  Ө(x, y, t) is the new potential to be determined. 
 

5.   FILTER CALCULATION OF F(x, y): 

 

To determine F(x, y) intends to use the following issue, purely convective: 
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The boundary conditions are: 
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6.   AUXILIARY PROBLEM IN TRANSVERSE DIRECTION 

 

To solve the Eq. (1) using the GITT is necessary as a first step to define an auxiliary eigenvalue problem, which will 
provide autofunção used to propose the expansion of the potential. We adopt the auxiliary problem in the y direction 
that will define the eigenfunction: ( )yYn : 
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where nΥ and nβ are the eigenfunctions and eigenvalues respectively. 

 
The solution is given by eigenfunction: 

 
( ) ( )ycosyY nn β=                                                                                                                                                       (23) 

 

The property of orthogonality is given by: 
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6.1   Problem Transformation Filter 

 

Applying the operator (y)dyY
~
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Applying the orthogonality property, defined by Eq. (24) yields the following relationship for the term transformed: 
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Where 
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6.2   Solution of Equation Filter 

 
The differential Eq. (26) has the numerical solution, so the inversion of the filter provides the solution: 
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6.3   Inverse-Transform Pair 

 
Writing the function Ө (x, y, t) as an expansion which is based on the eigenfunctions derived from the eigenvalue 

problem associated with the original problem, Eq. (20) to Eq. (24), and noting the orthogonality property we obtain the 
pair of formulas : 
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6.4   Transformation of the Problem in the direction "y" 

 

Operating the Eq. (29) with the operator ∫
1
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  and applying the Eq. (30) of the inverse in each term of Eq. (31), 

and using the orthogonality property Eq. (24) we have: 
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Thus, the equation is transformed filtered in two-dimensional partial differential system: 
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where: 
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6.5 Average Temperature 

 
The average temperature of the mixture, in its dimensionless form is given by MIKHAILOV and OZISIK (1984) 
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and considering the profile of fluid velocity in fully developed flow: 
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7.   RESULTS AND ANALYSIS 

 

Was generated a MATHEMATICA code that allowed the symbolic manipulation, numerical and analytical, of the 
mathematical model, simplifying and optimizing calculations made on the problem. The results were compared with 
results existing in literature. 

At first, in order to validate the present work, we determined the convergence for the filter as shown in Tab. 1. 
Subsequently we obtain the behavior of temperature for various locations along the channel and compared with results 
obtained by Cheroto (1995), and later by Santos (2002) as shown in Tab. 2. 
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Table 1. Convergence of the average temperature along the centerline to the Problem Filter: Bi = 10 5   
  Ω = 0.06491 and ∆θ (y) = 1-y2, Re = 452 and Pr = 0.7.

 

X 2  terms 4  terms 6  terms 8  terms 

0 0.993828 0.999074 0.999714 0.999878 

0.1 0.858043 0.856261 0.856218 0.856212 

0.2 0.714331   0.713325 0.713292 0.713289 

0.3 0.591992 0.591261 0.591234 0.59123 

0.4 0.490322 0.489733 0.489711 0.489708 

0.5 0.406079 0.405601 0.40558 0.405577 

0.6 0.336309 0.335915 0.335897 0.335895 

0.7 0.278525 0.2782 0.278186 0.278184 

0.8 0.230669 0.230402 0.230389 0.230388 

0.9 0.191037 0.190816 0.190805 0.190805 

1 0.158213 0.158031 0.158023 0.158023 

 
 

Table 2. Comparison of results using the same conditions used by Cheroto (1995) with Pe= 316.4, 
 Ω = 0.06491 and  Bi = 10 5 

 

hD
X  CHEROTO PRESENT WORK 

1 0.8642 0.8642 

3 0.7223 0.7224 

6 0.5677 0.5677 

9 0.4480 0.4480 

12 0.3537 0.3537 

15 0.2792 0.2793 

18 0.2205 0.2205 

21 0.1740 0.1741 

24 0.1374 0.1374 

27 0.1085 0.1085 

30 0.0856 0.0857 

33 0.0676 0.0676 

36 0.0534 0.0534 

39 0.0421 0.0422 

 

 
The present work obtains the behavior of the average temperature exactly equal to that achieved by Cheroto (1995), 

the graph in Fig. 2 shows the behavior of the average temperature along the channel. 
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Figure 2. Behavior of the average temperature along the channel with Ω = 0.06491, Pe = 316.4 and Bi = 10 5. 

 

Table 3 and Tab.4 compares these results using the same conditions used by Santos (2002), as: Bi = 10 5, Ω = 

0.06491 and ∆θ (y) = 1-y2, Re = 452 and Pr = 0.7. 
 

Table 3. Comparison temperature along the centerline between the present work and Santos (2002). Bi = 10 5,  
Ω = 0.06491 and ∆θ (y) = 1-y2 ,  Re = 452 and Pr = 0.7. 

 
X 2  terms 4  terms 6  terms 8 terms 12  terms  Santos (2002) 
0 0.993828 0.999074 0.999714 0.999878 0.999878 0.999814 

0.1 0.858043 0.856261 0.856218 0.856212 0.856213 0.856219 
0.2 0.714332 0.713325 0.713292 0.713289 0.713291 0.713293 
0.3 0.591992 0.591236 0.591234 0.591233 0.591234 0.591239 
0.4 0.49032 0.489733 0.489711 0.489711 0.489712 0.489719 
0.5 0.40608 0.405601 0.40558 0.405581 0.405578 0.40559 
0.6 0.33631 0.335915 0.335897 0.335899 0.335901 0.335909 
0.7 0.278526 0.27828 0.278186 0.278188 0.27819 0.278199 
0.8 0.23067 0.230402 0.230389 0.230393 0.230395 0.230404 
0.9 0.191038 0.190816 0.190805 0.190811 0.190813 0.19082 
1.0 0.158215 0.158031 0.158023 0.158029 0.158031 0.158037 
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Table 4. Comparison of the average temperature along the axis between the present work and Santos (2002). Bi = 10 5, 
Ω= 0.06491 and ∆θ (y ) = 1-y2  , Re = 452 and Pr = 0.7. 

 
X 1  term 3  terms 6  terms 9  terms 12  terms Santos (2002) 
0 0.8 0.8 0.8 0.8 0.8 0.8 

0.1 0.654616 0.654616 0.654617 0.654617 0.654617 0.654617 
0.2 0.541396 0.541397 0.541397 0.541397 0.541398 0.5414 
0.3 0.448291 0.448291 0.448292 0.448292 0.448293 0.448296 
0.4 0.371259 0.37126 0.371261 0.371261 0.371262 0.371266 
0.5 0.307472 0.307472 0.307474 0.307474 0.307475 0.30748 
0.6 0.254644 0.254645 0.254646 0.254646 0.254648 0.254654 
0.7 0.210893 0.210894 0.210896 0.210896 0.210897 0.210903 
0.8 0.174659 0.174660 0.174662 0.174662 0.174663 0.17467 
0.9 0.144651 0.144653 0.144654 0.144654 0.144655 0.144661 
1.0 0.119799 0.119801 0.119802 0.119802 0.119803 0.119808 

 

 
Figure 3 shows the comparison of the behavior of temperature along the centerline for the case theoretical and 

practical case presented by Li, W. (1990). In the Fig. 3 was used a number Biot = 105, Re = 430, Pr = 0.7 and thermal 
parabolic entry profile. 
 

 

Figure 3. Comparison of temperature along the centerline of the channel between the present work and experimental 
work presented by Li, Bi = 105, Ω = 0.01 and ∆θ (y) = 1-y2, Re = 430 and Pr = 0.7 

 
 

8.   CONCLUSIONS 

The Generalized Integral Transform Technique has proven to be an excellent alternative to solve problems purely 
convective, because beyond the safety of proven results, it still offers the main advantage of a low computational cost 
when you want the result of engineering. 

This method was the application of GITT in transverse and longitudinal directions to the fluid flow and allowing 
accurate analysis of the results. 

 Another significant help is the use of the property of orthogonality of the eigenfunctions in the elimination of 

directional dependency, allowing greater freedom in the choice of auxiliary problems. 

.The reliability of the results compared to traditional numerical methods is mainly due to greater analytical treatment 
of the equations representing the phenomenon. Thus it is possible to simplify the solution without the need to change 
the simplifying assumptions of mathematical modeling. The GITT may be more conservative than the traditional 
numerical methods, since it can have an automatic control of precision. 

The development of GITT, some years ago, allowed a huge field of work both in the scientific and technological 
fields. It is past the stage of proof of the advantages. The point is to exploit this technique in all its possibilities. 

Given the above mentioned, it appears that the technique used in this work is efficient in solving the heat flow in 
developing, obtaining also an excellent agreement with results obtained by Cheroto (2002), where the results are valid 
for long times. 



Proceedings of COBEM 2011         21
st
 Brazilian Congress of Mechanical Engineering 

Copyright © 2011 by ABCM October 24-28, 2011, Natal, RN, Brazil 

  
 
 

 

9.   REFERENCES 

 
CAVALCANTE, F.F., “Convecção Forçada Transiente Interna com Entrada Periódica: Solução Via Transformada 
Integral”, Dissertação de Mestrado, UFPB, Brasil, 2000. 
 
CHEROTO, S., “Theoretical Investigation of Unteady Forced Convection in Parallel-Plate Channels for    Thermally   
      Developing Flow”, Master Thesis, University of Maiami, Coral Gables, FL, USA, December 1995. 
 
COTTA, R.M. and OZISIK, M.N., “Laminar Forced Convection Inside Ducts with Periodic Variation of Inlet 

Temperature”, International Journal of Heat and Mass Transfer, vol.29, pp. 1495-1501, 1986. 
 
COTTA, R.M., MIKHAILOV, M.D. and OZISIK, M.N., “Transient Conjugated Forced Convection in Ducts with 

Periodically Varying Inlet Temperature”, International Journal of Heat and Mass Transfer, vol. 30, pp. 2073-2082, 
1987. 

 
COTTA, R.M. and GERK, J.E.V., “Mixed Finite-Difference/Integral Transform Approach for Parabolic-hyperbolic 

Problems in Transient Forced Convection”, Num. Heat Transfer, part B. Vol. 25, pp.433-448, 1994. 
 
GONDIM, R.R., “Convecção Forçada Transiente Interna com Difusão Axial Solução Via Transformação Integral”, 

Tese, UFRJ/COPPE, Rio de Janeiro, Brasil, 1997. 
 
LI, W., and KAKAÇ, S., Experimental and Theoretical Investigation of Unsteady Forced Convection in Ducts, Ph.D.  
      Dissertation, University of Miami, Coral Gables, FL, USA, 1990. 
 
MIKHAILOV, M. D and OZISIK, M N, “Unified Analysis and Solutions of Heat and Mass Diffusion”; Johhn Wiley,                               
      NewYork, 1984. 
 
SANTOS, S.J., “Analise Teórico de convecção Forçada Laminar Transiente com entrada Periódica”, UFPB, João   
     Pessoa, 2002. 
 
SANTOS, J.C., “Análise Teórica de Convecção Forçada Laminar Transiente de Fluido Não-Newtoniano Com Entrada 

Periódica”, Annals of 10th Brazilian Congresso of Thermal Sciences and Engineering, ENCIT 2004, Rio de Janeiro, 
2004. 

 
10.   RESPONSIBILITY NOTICE 
 

The authors are the only responsible for the printed material included in this paper. 
 


